9,692 research outputs found

    Chemiluminescence of asbestos-activated macrophages

    Get PDF
    Chemiluminescence, a measure of reactive oxygen release by phagocytes, was compared in peritoneal exudate macrophages elicited with chrysotile asbestos, Corynebacterium parvum and saline. Chrysotile asbestos- and C. parvum-activated macrophages produced significantly more chemiluminescence than saline-elicited macrophages. In a second series of experiments the ability of opsonized chrysotile asbestos to act as a trigger for the release of chemiluminescence was tested. Opsonized chrysotile asbestos produced a dose-related release of chemiluminescence from activated macrophages except at the highest dose where chemiluminescence was reduced due, possibly, to a toxic effect of chrysotile during the assay. Opsonized latex also triggered a dose-related chemiluminescent response from activated macrophages. The potential role of toxic reactive oxygen species, released from macrophages, in the development of asbestos-related pulmonary inflammation and fibrosis are discussed

    How fast do Jupiters grow? Signatures of the snowline and growth rate in the distribution of gas giant planets

    Get PDF
    We present here observational evidence that the snowline plays a significant role in the formation and evolution of gas giant planets. When considering the population of observed exoplanets, we find a boundary in mass-semimajor axis space that suggests planets are preferentially found beyond the snowline prior to undergoing gap-opening inward migration and associated gas accretion. This is consistent with theoretical models suggesting that sudden changes in opacity -- as would occur at the snowline -- can influence core migration. Furthermore, population synthesis modelling suggests that this boundary implies that gas giant planets accrete ~ 70 % of the inward flowing gas, allowing ~ 30$ % through to the inner disc. This is qualitatively consistent with observations of transition discs suggesting the presence of inner holes, despite there being ongoing gas accretion.Comment: 7 pages, 6 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Motion of the Tippe Top : Gyroscopic Balance Condition and Stability

    Full text link
    We reexamine a very classical problem, the spinning behavior of the tippe top on a horizontal table. The analysis is made for an eccentric sphere version of the tippe top, assuming a modified Coulomb law for the sliding friction, which is a continuous function of the slip velocity v⃗P\vec v_P at the point of contact and vanishes at v⃗P=0\vec v_P=0. We study the relevance of the gyroscopic balance condition (GBC), which was discovered to hold for a rapidly spinning hard-boiled egg by Moffatt and Shimomura, to the inversion phenomenon of the tippe top. We introduce a variable ξ\xi so that ξ=0\xi=0 corresponds to the GBC and analyze the behavior of ξ\xi. Contrary to the case of the spinning egg, the GBC for the tippe top is not fulfilled initially. But we find from simulation that for those tippe tops which will turn over, the GBC will soon be satisfied approximately. It is shown that the GBC and the geometry lead to the classification of tippe tops into three groups: The tippe tops of Group I never flip over however large a spin they are given. Those of Group II show a complete inversion and the tippe tops of Group III tend to turn over up to a certain inclination angle θf\theta_f such that θf<π\theta_f<\pi, when they are spun sufficiently rapidly. There exist three steady states for the spinning motion of the tippe top. Giving a new criterion for stability, we examine the stability of these states in terms of the initial spin velocity n0n_0. And we obtain a critical value ncn_c of the initial spin which is required for the tippe top of Group II to flip over up to the completely inverted position.Comment: 52 pages, 11 figures, to be published in SIAM Journal on Applied Dynamical Syste

    Uniform Asymptotics for Polynomials Orthogonal With Respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles: Announcement of Results

    Full text link
    We compute the pointwise asymptotics of orthogonal polynomials with respect to a general class of pure point measures supported on finite sets as both the number of nodes of the measure and also the degree of the orthogonal polynomials become large. The class of orthogonal polynomials we consider includes as special cases the Krawtchouk and Hahn classical discrete orthogonal polynomials, but is far more general. In particular, we consider nodes that are not necessarily equally spaced. The asymptotic results are given with error bound for all points in the complex plane except for a finite union of discs of arbitrarily small but fixed radii. These exceptional discs are the neighborhoods of the so-called band edges of the associated equilibrium measure. As applications, we prove universality results for correlation functions of a general class of discrete orthogonal polynomial ensembles, and in particular we deduce asymptotic formulae with error bound for certain statistics relevant in the random tiling of a hexagon with rhombus-shaped tiles. The discrete orthogonal polynomials are characterized in terms of a a Riemann-Hilbert problem formulated for a meromorphic matrix with certain pole conditions. By extending the methods of [17, 22], we suggest a general and unifying approach to handle Riemann-Hilbert problems in the situation when poles of the unknown matrix are accumulating on some set in the asymptotic limit of interest.Comment: 28 pages, 7 figure
    • …
    corecore