Uniform Asymptotics for Polynomials Orthogonal With Respect to a General
Class of Discrete Weights and Universality Results for Associated Ensembles:
Announcement of Results
We compute the pointwise asymptotics of orthogonal polynomials with respect
to a general class of pure point measures supported on finite sets as both the
number of nodes of the measure and also the degree of the orthogonal
polynomials become large. The class of orthogonal polynomials we consider
includes as special cases the Krawtchouk and Hahn classical discrete orthogonal
polynomials, but is far more general. In particular, we consider nodes that are
not necessarily equally spaced. The asymptotic results are given with error
bound for all points in the complex plane except for a finite union of discs of
arbitrarily small but fixed radii. These exceptional discs are the
neighborhoods of the so-called band edges of the associated equilibrium
measure. As applications, we prove universality results for correlation
functions of a general class of discrete orthogonal polynomial ensembles, and
in particular we deduce asymptotic formulae with error bound for certain
statistics relevant in the random tiling of a hexagon with rhombus-shaped
tiles.
The discrete orthogonal polynomials are characterized in terms of a a
Riemann-Hilbert problem formulated for a meromorphic matrix with certain pole
conditions. By extending the methods of [17, 22], we suggest a general and
unifying approach to handle Riemann-Hilbert problems in the situation when
poles of the unknown matrix are accumulating on some set in the asymptotic
limit of interest.Comment: 28 pages, 7 figure