667 research outputs found

    Reaction kinetics of muonium with the halogen gases (F2, Cl2, and Br2)

    Get PDF
    Copyright @ 1989 American Institute of PhysicsBimolecular rate constants for the thermal chemical reactions of muonium (Mu) with the halogen gasesā€”Mu+X2ā†’MuX+Xā€”are reported over the temperature ranges from 500 down to 100, 160, and 200 K for X2=F2,Cl2, and Br2, respectively. The Arrhenius plots for both the chlorine and fluorine reactions show positive activation energies Ea over the whole temperature ranges studied, but which decrease to near zero at low temperature, indicative of the dominant role played by quantum tunneling of the ultralight muonium atom. In the case of Mu+F2, the bimolecular rate constant k(T) is essentially independent of temperature below 150 K, likely the first observation of Wigner threshold tunneling in gas phase (H atom) kinetics. A similar trend is seen in the Mu+Cl2 reaction. The Br2 data exhibit an apparent negative activation energy [Ea=(āˆ’0.095Ā±0.020) kcalā€‰molāˆ’1], constant over the temperature range of āˆ¼200ā€“400 K, but which decreases at higher temperatures, indicative of a highly attractive potential energy surface. This result is consistent with the energy dependence in the reactive cross section found some years ago in the atomic beam data of Hepburn et al. [J. Chem. Phys. 69, 4311 (1978)]. In comparing the present Mu data with the corresponding H atom kinetic data, it is found that Mu invariably reacts considerably faster than H at all temperatures, but particularly so at low temperatures in the cases of F2 and Cl2. The current transition state calculations of Steckler, Garrett, and Truhlar [Hyperfine Interact. 32, 779 (986)] for Mu+X2 account reasonably well for the rate constants for F2 and Cl2 near room temperature, but their calculated value for Mu+Br2 is much too high. Moreover, these calculations seemingly fail to account for the trend in the Mu+F2 and Mu+Cl2 data toward pronounced quantum tunneling at low temperatures. It is noted that the Mu kinetics provide a crucial test of the accuracy of transition state treatments of tunneling on these early barrier HX2 potential energy surfaces.NSERC (Canada), Donors of the Petroleum Research Fund, administered by the American Chemical Society, for their partial support of this research and the Canada Council

    Gill Function in an Elasmobranch

    Get PDF
    Highly efficient oxygen uptake in elasmobranchs, as indicated by frequent excess of PaO2 over PEO2 has previously been ascribed to the operation of multicapillary rather than counter-current gas exchange by the gills. Analysis of models shows that, at maximum efficiency, a multicapillary system cannot account for values of PaO2 greater than (PIO2+PEO2)/2. In Port Jackson sharks Heterodontus portusjacksoni) PaO2 commonly exceeds (PIO2+PEO2)/2, which indicates the operation of a functional counter-current at the respiratory surface. The anatomical basis of this counter-current is provided by the demonstration that a continuous flow of water passes between the secondary lamellae into septal canals and thence via the parabranchial cavities to the exterior

    Feasibility study: investigation of car park-based V2G services in the UK central hub

    Get PDF
    The increasing uptake of electric vehicles, and the established practice of long-term parking at stations and airports, offers an opportunity to develop a flexible approach to help with the energy storage dilemma. This paper investigates the feasibility of using a number of EV batteries as an energy storage and grid balancing solution within the UK Central Hub area. Here, the capital cost of the vehicle is a sunk cost to the EV owner. The potential income generated, or discount on long-term parking, is an additional benefit of ownership. This paper considers the income available to a small and large size car park from the different market mechanisms to offer grid support in the UK and contrasts this with the complexity and costs of the EV charging infrastructure required within these types of scheme

    Which executive functioning deficits are associated with AD/HD, ODD/CD and comorbid AD/HD+ODD/CD?

    Get PDF
    Item does not contain fulltextThis study investigated (1) whether attention deficit/hyperactivity disorder (AD/HD) is associated with executive functioning (EF) deficits while controlling for oppositional defiant disorder/conduct disorder (ODD/CD), (2) whether ODD/CD is associated with EF deficits while controlling for AD/HD, and (3)~whether a combination of AD/HD and ODD/CD is associated with EF deficits (and the possibility that there is no association between EF deficits and AD/HD or ODD/CD in isolation). Subjects were 99~children ages 6ā€“12 years. Three putative domains of EF were investigated using well-validated tests: verbal fluency, working memory, and planning. Independent of ODD/CD, AD/HD was associated with deficits in planning and working memory, but not in verbal fluency. Only teacher rated AD/HD, but not parent rated AD/HD, significantly contributed to the prediction of EF task performance. No EF deficits were associated with ODD/CD. The presence of comorbid AD/HD accounts for the EF deficits in children with comorbid AD/HD+ODD/CD. These results suggest that EF deficits are unique to AD/HD and support the model proposed by R. A. Barkley (1997).17 p

    Optical Properties of Organic Haze Analogues in Water-rich Exoplanet Atmospheres Observable with JWST

    Full text link
    JWST has begun its scientific mission, which includes the atmospheric characterization of transiting exoplanets. Some of the first exoplanets to be observed by JWST have equilibrium temperatures below 1000 K, which is a regime where photochemical hazes are expected to form. The optical properties of these hazes, which controls how they interact with light, are critical for interpreting exoplanet observations, but relevant experimental data are not available. Here we measure the density and optical properties of organic haze analogues generated in water-rich exoplanet atmosphere experiments. We report optical constants (0.4 to 28.6 {\mu}m) of organic haze analogues for current and future observational and modeling efforts covering the entire wavelength range of JWST instrumentation and a large part of Hubble. We use these optical constants to generate hazy model atmospheric spectra. The synthetic spectra show that differences in haze optical constants have a detectable effect on the spectra, impacting our interpretation of exoplanet observations. This study emphasizes the need to investigate the optical properties of hazes formed in different exoplanet atmospheres, and establishes a practical procedure to determine such properties.Comment: 4 figures, 1 Table, Published in Nature Astronom

    KELT-18b: Puffy Planet, Hot Host, Probably Perturbed

    Get PDF
    We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright ( V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of K and a mass of , situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of , a radius of , and a density of , making it one of the most inflated planets known around a hot star. We argue that KELT-18bā€™s high temperature and low surface gravity, which yield an estimated āˆ¼600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of āˆ¼1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18\u27s spin axis and its planetā€™s orbital axis. The inferior conjunction time is 2457542.524998 Ā± 0.000416 (BJD TDB ) and the orbital period is 2.8717510 Ā± 0.0000029 days. We encourage Rossiterā€“McLaughlin measurements in the near future to confirm the suspected spinā€“orbit misalignment of this system

    CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling

    Get PDF
    CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras[superscript G12D] mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)Damon Runyon Cancer Research Foundation (Fellowship DRG-2117-12)Massachusetts Institute of Technology. Simons Center for the Social Brain (Postdoctoral Fellowship)European Molecular Biology Organization (Fellowship)Foundation for Polish Science (Fellowship)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Science Foundation (U.S.). Graduate Research FellowshipMassachusetts Institute of Technology (Presidential Graduate Fellowship)Human Frontier Science Program (Strasbourg, France) (Postdoctoral Fellowship)National Human Genome Research Institute (U.S.) (CEGS P50 HG006193)Howard Hughes Medical InstituteKlarman Cell ObservatoryNational Cancer Institute (U.S.) (Center of Cancer Nanotechnology Excellence Grant U54CA151884)National Institutes of Health (U.S.) (Controlled Release Grant EB000244)National Heart, Lung, and Blood Institute (Program of Excellence in Nanotechnology (PEN) Award Contract HHSN268201000045C)Massachusetts Institute of Technology (Poitras Gift 1631119)Stanley CenterSimons Foundation (6927482)Nancy Lurie Marks Family Foundation (6928117)United States. Public Health Service (National Institutes of Health (U.S.) R01-CA133404)David H. Koch Institute for Integrative Cancer Research at MIT (Marie D. and Pierre Casimir-Lambert Fund)MIT Skoltech InitiativeNational Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051)National Institute of Mental Health (U.S.) (Directorā€™s Pioneer Award DP1-MH100706)National Institute of Neurological Disorders and Stroke (U.S.) (Transformative R01 Grant R01-NS 07312401)National Science Foundation (U.S.) (Waterman Award)W. M. Keck FoundationKinship Foundation. Searle Scholars ProgramKlingenstein FoundationVallee FoundationMerkin Foundatio

    The impact of the CACNA1C gene polymorphism on frontolimbic function in bipolar disorder

    Get PDF
    Genome-wide association studies in bipolar disorder (BD)1 have implicated a single-nucleotide polymorphism (rs1006737, G right arrow A) in the CACNA1C gene, which encodes for the alpha 1c (CAV1.2) subunit of the voltage-gated, L-type calcium channel. Neuroimaging studies of healthy individuals report that this risk allele modulates brain function within limbic (amygdala, anterior cingulate gyrus) and hippocampal regions during tasks of reward processing2, 3 and episodic memory. Moreover, animal studies suggest that the CaV1.2 L-type calcium channels influence emotional behaviour through enhanced neurotransmission via the lateral amygdala pathway. On the basis of this evidence, we tested the hypotheses that the CACNA1C rs1006737 risk allele will modulate neural responses within predefined prefrontal and subcortical regions of interest during emotional face processing and that this effect would be amplified in BD patients

    The K2-3 system revisited: testing photoevaporation and core-powered mass loss with three small planets spanning the radius valley

    Full text link
    Multi-planet systems orbiting M dwarfs provide valuable tests of theories of small planet formation and evolution. K2-3 is an early M dwarf hosting three small exoplanets (1.5-2.0 Earth radii) at distances of 0.07-0.20 AU. We measure the high-energy spectrum of K2-3 with HST/COS and XMM-Newton, and use empirically-driven estimates of Ly-alpha and extreme ultraviolet flux. We use EXOFASTv2 to jointly fit radial velocity, transit, and SED data. This constrains the K2-3 planet radii to 4% uncertainty and the masses of K2-3b and c to 13% and 30%, respectively; K2-3d is not detected in RV measurements. K2-3b and c are consistent with rocky cores surrounded by solar composition envelopes (mass fractions of 0.36% and 0.07%), H2O envelopes (55% and 16%), or a mixture of both. However, based on the high-energy output and estimated age of K2-3, it is unlikely that K2-3b and c retain solar composition atmospheres. We pass the planet parameters and high-energy stellar spectrum to atmospheric models. Dialing the high-energy spectrum up and down by a factor of 10 produces significant changes in trace molecule abundances, but not at a level detectable with transmission spectroscopy. Though the K2-3 planets span the small planet radius valley, the observed system architecture cannot be readily explained by photoevaporation or core-powered mass loss. We instead propose 1) the K2-3 planets are all volatile-rich, with K2-3d having a lower density than typical of super-Earths, and/or 2) the K2-3 planet architecture results from more stochastic processes such as planet formation, planet migration, and impact erosion.Comment: 15 pages, 7 figure, published in AJ, HLSPs at https://archive.stsci.edu/hlsp/mstarpanspe
    • ā€¦
    corecore