185 research outputs found
Equilibrium Properties of Temporally Asymmetric Hebbian Plasticity
A theory of temporally asymmetric Hebb (TAH) rules which depress or
potentiate synapses depending upon whether the postsynaptic cell fires before
or after the presynaptic one is presented. Using the Fokker-Planck formalism,
we show that the equilibrium synaptic distribution induced by such rules is
highly sensitive to the manner in which bounds on the allowed range of synaptic
values are imposed. In a biologically plausible multiplicative model, we find
that the synapses in asynchronous networks reach a distribution that is
invariant to the firing rates of either the pre- or post-synaptic cells. When
these cells are temporally correlated, the synaptic strength varies smoothly
with the degree and phase of synchrony between the cells.Comment: 3 figures, minor corrections of equations and tex
Double- to Single-Strand Transition Induces Forces and Motion in DNA Origami Nanostructures
The design of dynamic, reconfigurable devices is crucial for the bottom-up construction of artificial biological systems. DNA can be used as an engineering material for the de-novo design of such dynamic devices. A self-assembled DNA origami switch is presented that uses the transition from double- to single-stranded DNA and vice versa to create and annihilate an entropic force that drives a reversible conformational change inside the switch. It is distinctively demonstrated that a DNA single-strand that is extended with 0.34 nm per nucleotide - the extension this very strand has in the double-stranded configuration - exerts a contractive force on its ends leading to large-scale motion. The operation of this type of switch is demonstrated via transmission electron microscopy, DNA-PAINT super-resolution microscopy and darkfield microscopy. The work illustrates the intricate and sometimes counter-intuitive forces that act in nanoscale physical systems that operate in fluids
Markov analysis of stochastic resonance in a periodically driven integrate-fire neuron
We model the dynamics of the leaky integrate-fire neuron under periodic
stimulation as a Markov process with respect to the stimulus phase. This avoids
the unrealistic assumption of a stimulus reset after each spike made in earlier
work and thus solves the long-standing reset problem. The neuron exhibits
stochastic resonance, both with respect to input noise intensity and stimulus
frequency. The latter resonance arises by matching the stimulus frequency to
the refractory time of the neuron. The Markov approach can be generalized to
other periodically driven stochastic processes containing a reset mechanism.Comment: 23 pages, 10 figure
A neural code for egocentric spatial maps in the human medial temporal lobe
Spatial navigation and memory rely on neural systems that encode places, distances, and directions in relation to the external world or relative to the navigating organism. Place, grid, and head-direction cells form key units of world-referenced, allocentric cognitive maps, but the neural basis of self-centered, egocentric representations remains poorly understood. Here, we used human single-neuron recordings during virtual spatial navigation tasks to identify neurons providing a neural code for egocentric spatial maps in the human brain. Consistent with previous observations in rodents, these neurons represented egocentric bearings toward reference points positioned throughout the environment. Egocentric bearing cells were abundant in the parahippocampal cortex and supported vectorial representations of egocentric space by also encoding distances toward reference points. Beyond navigation, the observed neurons showed activity increases during spatial and episodic memory recall, suggesting that egocentric bearing cells are not only relevant for navigation but also play a role in human memory
An associative memory of Hodgkin-Huxley neuron networks with Willshaw-type synaptic couplings
An associative memory has been discussed of neural networks consisting of
spiking N (=100) Hodgkin-Huxley (HH) neurons with time-delayed couplings, which
memorize P patterns in their synaptic weights. In addition to excitatory
synapses whose strengths are modified after the Willshaw-type learning rule
with the 0/1 code for quiescent/active states, the network includes uniform
inhibitory synapses which are introduced to reduce cross-talk noises. Our
simulations of the HH neuron network for the noise-free state have shown to
yield a fairly good performance with the storage capacity of for the low neuron activity of . This
storage capacity of our temporal-code network is comparable to that of the
rate-code model with the Willshaw-type synapses. Our HH neuron network is
realized not to be vulnerable to the distribution of time delays in couplings.
The variability of interspace interval (ISI) of output spike trains in the
process of retrieving stored patterns is also discussed.Comment: 15 pages, 3 figures, changed Titl
A Fokker-Planck formalism for diffusion with finite increments and absorbing boundaries
Gaussian white noise is frequently used to model fluctuations in physical
systems. In Fokker-Planck theory, this leads to a vanishing probability density
near the absorbing boundary of threshold models. Here we derive the boundary
condition for the stationary density of a first-order stochastic differential
equation for additive finite-grained Poisson noise and show that the response
properties of threshold units are qualitatively altered. Applied to the
integrate-and-fire neuron model, the response turns out to be instantaneous
rather than exhibiting low-pass characteristics, highly non-linear, and
asymmetric for excitation and inhibition. The novel mechanism is exhibited on
the network level and is a generic property of pulse-coupled systems of
threshold units.Comment: Consists of two parts: main article (3 figures) plus supplementary
text (3 extra figures
Balancing Feed-Forward Excitation and Inhibition via Hebbian Inhibitory Synaptic Plasticity
It has been suggested that excitatory and inhibitory inputs to cortical cells are balanced, and that this balance is important for the highly irregular firing observed in the cortex. There are two hypotheses as to the origin of this balance. One assumes that it results from a stable solution of the recurrent neuronal dynamics. This model can account for a balance of steady state excitation and inhibition without fine tuning of parameters, but not for transient inputs. The second hypothesis suggests that the feed forward excitatory and inhibitory inputs to a postsynaptic cell are already balanced. This latter hypothesis thus does account for the balance of transient inputs. However, it remains unclear what mechanism underlies the fine tuning required for balancing feed forward excitatory and inhibitory inputs. Here we investigated whether inhibitory synaptic plasticity is responsible for the balance of transient feed forward excitation and inhibition. We address this issue in the framework of a model characterizing the stochastic dynamics of temporally anti-symmetric Hebbian spike timing dependent plasticity of feed forward excitatory and inhibitory synaptic inputs to a single post-synaptic cell. Our analysis shows that inhibitory Hebbian plasticity generates ‘negative feedback’ that balances excitation and inhibition, which contrasts with the ‘positive feedback’ of excitatory Hebbian synaptic plasticity. As a result, this balance may increase the sensitivity of the learning dynamics to the correlation structure of the excitatory inputs
Emergence of Connectivity Motifs in Networks of Model Neurons with Short- and Long-term Plastic Synapses
Recent evidence in rodent cerebral cortex and olfactory bulb suggests that short-term dynamics of excitatory synaptic transmission is correlated to stereotypical connectivity motifs. It was observed that neurons with short-term facilitating synapses form predominantly reciprocal pairwise connections, while neurons with short-term depressing synapses form unidirectional pairwise connections. The cause of these structural differences in synaptic microcircuits is unknown. We propose that these connectivity motifs emerge from the interactions between short-term synaptic dynamics (SD) and long-term spike-timing dependent plasticity (STDP). While the impact of STDP on SD was shown in vitro, the mutual interactions between STDP and SD in large networks are still the subject of intense research. We formulate a computational model by combining SD and STDP, which captures faithfully short- and long-term dependence on both spike times and frequency. As a proof of concept, we simulate recurrent networks of spiking neurons with random initial connection efficacies and where synapses are either all short-term facilitating or all depressing. For identical background inputs, and as a direct consequence of internally generated activity, we find that networks with depressing synapses evolve unidirectional connectivity motifs, while networks with facilitating synapses evolve reciprocal connectivity motifs. This holds for heterogeneous networks including both facilitating and depressing synapses. Our study highlights the conditions under which SD-STDP might the correlation between facilitation and reciprocal connectivity motifs, as well as between depression and unidirectional motifs. We further suggest experiments for the validation of the proposed mechanism
Intrinsic Stability of Temporally Shifted Spike-Timing Dependent Plasticity
Spike-timing dependent plasticity (STDP), a widespread synaptic modification mechanism, is sensitive to correlations between presynaptic spike trains and it generates competition among synapses. However, STDP has an inherent instability because strong synapses are more likely to be strengthened than weak ones, causing them to grow in strength until some biophysical limit is reached. Through simulations and analytic calculations, we show that a small temporal shift in the STDP window that causes synchronous, or nearly synchronous, pre- and postsynaptic action potentials to induce long-term depression can stabilize synaptic strengths. Shifted STDP also stabilizes the postsynaptic firing rate and can implement both Hebbian and anti-Hebbian forms of competitive synaptic plasticity. Interestingly, the overall level of inhibition determines whether plasticity is Hebbian or anti-Hebbian. Even a random symmetric jitter of a few milliseconds in the STDP window can stabilize synaptic strengths while retaining these features. The same results hold for a shifted version of the more recent “triplet” model of STDP. Our results indicate that the detailed shape of the STDP window function near the transition from depression to potentiation is of the utmost importance in determining the consequences of STDP, suggesting that this region warrants further experimental study
- …