441 research outputs found

    The Basic Concepts of Accounting

    Get PDF
    The Basic Concepts of Accountin

    Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations

    Full text link
    We study the possibility for detecting gamma-ray emission from galaxy clusters. We consider 1) leptophilic models of dark matter (DM) annihilation that include a Sommerfeld enhancement (SFE), 2) different representative benchmark models of supersymmetric DM, and 3) cosmic ray (CR) induced pion decay. Among all clusters/groups of a flux-limited X-ray sample, we predict Virgo, Fornax and M49 to be the brightest DM sources and find a particularly low CR-induced background for Fornax. For a minimum substructure mass given by the DM free-streaming scale, cluster halos maximize the substructure boost for which we find a factor above 1000. Since regions around the virial radius dominate the annihilation flux of substructures, the resulting surface brightness profiles are almost flat. This makes it very challenging to detect this flux with imaging atmospheric Cherenkov telescopes. Assuming cold dark matter with a substructure mass distribution down to an Earth mass and using extended Fermi upper limits, we rule out the leptophilic models in their present form in 28 clusters, and limit the boost from SFE in M49 and Fornax to be < 5. This corresponds to a limit on SFE in the Milky Way of < 3, which is too small to account for the increasing positron fraction with energy as seen by PAMELA and challenges the DM interpretation. Alternatively, if SFE is realized in Nature, this would imply a limiting substructure mass of M_lim > 10^4 M_sol - a problem for structure formation. Using individual cluster observations, it will be challenging for Fermi to constrain our selection of DM benchmark models without SFE. The Fermi upper limits are, however, closing in on our predictions for the CR flux using an analytic model based on cosmological hydrodynamical cluster simulations. We limit the CR-to-thermal pressure in nearby bright galaxy clusters of the Fermi sample to < 10% and in Norma and Coma to < 3%.Comment: 43 pages, 23 figures, 10 tables. Accepted for publication in Phys. Rev. D: streamlined paper, added a paragraph about detectability to introduction, few references added, and few typos correcte

    AWM 4 - an isothermal cluster observed with XMM-Newton

    Full text link
    We present analysis of an XMM observation of the poor cluster AWM 4. The cluster is relaxed and its X-ray halo is regular with no apparent substructure. Azimuthally averaged radial spectral profiles suggest that the cluster is isothermal to a radius of at least 160 kpc, with no evidence of a central cooling region. Spectral mapping shows some significant temperature and abundance substructure, but no evidence of strong cooling in the cluster core. Abundance increases in the core, but not to the extent expected, and we find some indication of gas mixing. Modeling the three dimensional properties of the system, we show that ongoing heating by an AGN in the dominant elliptical, NGC 6051, is likely to be responsible for the lack of cooling. We also compare AWM 4 to MKW 4, a cluster of similar mass observed recently with XMM. While the two systems have similar gravitational mass profiles, MKW 4 has a cool core and somewhat steeper gas density profile, which leads to a lower core entropy. AWM 4 has a considerably larger gas fraction at 0.1 R200, and we show that these differences result from the difference in mass between the two dominant galaxies and the activity cycles of their AGN. We estimate the energy required to raise the temperature profile of MKW 4 to match that of AWM 4 to be 9x10^58 erg, or 3x10^43 erg/s for 100 Myr, comparable to the likely power output of the AGN in AWM 4.Comment: Accepted for publication in MNRAS, 18 pages, 1 colour and 11 b&w postscript figures, corrected author affiliatio

    AGN feedback and gas mixing in the core of NGC 4636

    Full text link
    Chandra observations of NGC 4636 show disturbances in the galaxy X-ray halo, including arm-like high surface brightness features (tentatively identified as AGN driven shocks) and a possible cavity on the west side of the galaxy core. We present Chandra and XMM spectral maps of NGC 4636 which confirm the presence of the cavity and show it to be bounded by the arm features. The maps also reveal a ~15 kpc wide plume of low temperature, high abundance gas extending 25-30 kpc to the southwest of the galaxy. The cavity appears to be embedded in this plume, and we interpret the structure as being entrained gas drawn out of the galaxy core during previous episodes of AGN activity. The end of the plume is marked by a well defined edge, with significant falls in surface brightness, temperature and abundance, indicating a boundary between galaxy and group/cluster gas. This may be evidence that as well as preventing gas cooling through direct heating, AGN outbursts can produce significant gas mixing, disturbing the temperature structure of the halo and transporting metals out from the galaxy into the surrounding intra-group medium.Comment: 4 Pages, 2 colour figures, accepted for publication in ApJ Letters. Version with high quality images at http://hea-www.harvard.edu/~ejos/files/N4636_hires.pd

    Nonthermal Bremsstrahlung and Hard X-ray Emission from Clusters of Galaxies

    Get PDF
    We have calculated nonthermal bremsstrahlung (NTB) models for the hard X-ray (HXR) tails recently observed by BeppoSAX in clusters of galaxies. In these models, the HXR emission is due to suprathermal electrons with energies of about 10-200 keV. Under the assumption that the suprathermal electrons form part of a continuous spectrum of electrons including highly relativistic particles, we have calculated the inverse Compton (IC) extreme ultraviolet (EUV), HXR, and radio synchrotron emission by the extensions of the same populations. For accelerating electron models with power-law momentum spectra (N[p] propto p^{- mu}) with mu <~ 2.7, which are those expected from strong shock acceleration, the IC HXR emission exceeds that due to NTB. Thus, these models are only of interest if the electron population is cut-off at some upper energy <~1 GeV. Similarly, flat spectrum accelerating electron models produce more radio synchrotron emission than is observed from clusters if the ICM magnetic field is B >~ 1 muG. The cooling electron model produces vastly too much EUV emission as compared to the observations of clusters. We have compared these NTB models to the observed HXR tails in Coma and Abell 2199. The NTB models require a nonthermal electron population which contains about 3% of the number of electrons in the thermal ICM. If the suprathermal electron population is cut-off at some energy above 100 keV, then the models can easily fit the observed HXR fluxes and spectral indices in both clusters. For accelerating electron models without a cutoff, the electron spectrum must be rather steep >~ 2.9.Comment: Accepted for publication in the Astrophysical Journal. 10 pages with 5 embedded Postscript figures in emulateapj.sty. An abbreviated abstract follow

    A Chandra Observation of Abell 13: Investigating the Origin of the Radio Relic

    Full text link
    We present results from the Chandra X-ray observation of Abell 13, a galaxy cluster that contains an unusual noncentral radio source, also known as a radio relic. This is the first pointed X-ray observation of Abell 13, providing a more sensitive study of the properties of the X-ray gas. The X-ray emission from Abell 13 is extended to the northwest of the X-ray peak and shows substructure indicative of a recent merger event. The cluster X-ray emission is centered on the bright galaxy H of Slee et al. 2001. We find no evidence for a cooling flow in the cluster. A knot of excess X-ray emission is coincident with the other bright elliptical galaxy F. This knot of emission has properties similar to the enhanced emission associated with the large galaxies in the Coma cluster. With these Chandra data we are able to compare the properties of the hot X-ray gas with those of the radio relic from VLA data, to study the interaction of the X-ray gas with the radio emitting electrons. Our results suggest that the radio relic is associated with cooler gas in the cluster. We suggest two explanations for the coincidence of the cooler gas and radio source. First, the gas may have been uplifted by the radio relic from the cluster core. Alternatively, the relic and cool gas may have been displaced from the central galaxy during the cluster merger event.Comment: 11 pages, 9 figures, Accepted for Publication in the Astrophysical Journal, higher-resolution figures can be found at http://www.astro.virginia.edu/~amj3r/Abell13
    • …
    corecore