
N 6Z 54354 

~~----------~~~~~~--~~4--P~----------~ 
L. 

" - C0 
,';'\J c y 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

TECHNICAL NOTE 2354 

A NUMERICAL APPROACH TO THE INSTA BILITY 

PROBLEM OF MONOCOQUE CYLINDERS 

By Bruno A. Boley, Joseph Kempner 
and J. Mayers 

Polytechnic Institute of Brooklyn 

Washington 
April 1951 

https://ntrs.nasa.gov/search.jsp?R=19930083089 2020-06-17T19:49:18+00:00Z





1 

, -
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 
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A NUMERICAL APPROACH TO THE INSTABILITY 

PROBLEM OF MONOCOQUE CYLINDERS 

By Bruno A. Boley, Joseph Kempner 
and J. Mayers 

SUf1MARY 

Two closely related numerical methods which employ operations -tables 
have been developed and used in the calculation of the buckling load of 
a monocoque cylinder subjected to pure bending. They are based on the 
assumption of a simplified structure which includes only the most highly 
compressed portion of the cylinder. The first method makes use of a 
l4-row determinant, whereas the second method requires the solution of 
a single lO-row determinant. The buckling loads of three cylinders with 
widely different characteristics were calculated by these methods. 
Reasonable agreement with experiment was obtained. 

A procedure similar to the first method was developed for the cal­
culation of the buckling load of a cylinder with a cutout. A limited 
experimental check was obtained . 

INTRODUCTION 

The calculation of the buckling loads of reinforced monocoque 
cylinders is a problem of some importance in airplane stress analysis . 
Existing theoretical methods for determining such buckling loads, 
including energy methods, are, in general, lengthy and difficult to apply. 
:\. numerical procedure is therefore developed in this report in order to 
simplify the calculations. 

Southwell's relaxation procedure (reference 1) and, in general, methods 
which make use of an operations table (see appendix A) have been success­
ful in the solution of a variety of stress-distribution problems. It was 
therefore natural that an attempt be made to adapt these methods to 
buckling-load calculations. In reference 2 three closely related methods 
for determining the buckling load from an operations table were established 
and described. A limited experimental check was also obtained . In refer­
ence 2 the three methods were called the Determinant, Energy, and 
Convergence Methods . In this paper, the first two of these methods, along 
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with slight modifications, are used to calculate the buckling load in 
pure bending of four monocoque cylinders with widely different charac­
teristics, one of which had a symmetric cutout on the compression side. 
It was found that the buckling loads could be conveniently calculated 
when the actual cylinder was replaced by a simplified structure pre­
serving the main characteristics of the original cylinder . 

A twofold purpose is thus fulfilled by this investigation . In the 
first place, a method which is fairly short and reasonably accurate is 
developed for the calculation of the buckling load of a monocoque cylinder. 
Secondly, a further experimental check of the methods of reference 2 is 
afforded by a comparison of the theoretical and experimental buckling 
loads for the cylinders considered. 

The authors are indebted to Dr. N. J. Hoff for his advice and help­
ful criticism, and to Messrs . J. Mele, B. Erickson, and E. B. Beck for 
their part in the experimental phase of the investigation. The work was 
sponsored by and conducted with financial aid from the National Advisory 
Committee for Aeronautics. 

CALCULATION OF BUCKLING LOAD OF CYLINDERS WITHOUT CUTOUT 

Methods of Calculation 

The buckling loads were calculated for three cylinders, the charac­
teristics of which are given in table I and figure 1. The methods of 
calculation which appeared most convenient are described below . These 
methods yield the load P in the most highly compressed stringer at the 
instant of buckling of the cylinder as a whole . From this load the total 
applied bending moment can be calculated, provided the stress distribution 
is known . The validity and the accuracy of the methods are discussed in 
the next section. Basic theoretical considerations underlying the cal­
culations may be found in reference 2 and in appendix A. A numerical 
example is given in appendix B. 

Simplified- cylinder solution. - Let the cylinder under consideration 
be replaced by the simplified structure of figure 2. The operations 
table corresponding to this structure is that presented in table II . All 
symbols which appear in this table are defined in appendix C. It should 
be noticed that the operations table is symmetrical about its main diagonal. 
The buckling load P has the value which will make the determinant repre­
sented by table II equal to zero . It may be most conveniently obtained by 
evaluating numerically the determinant for several values of P, plotting 
the determinant values against P, and reading off the load at which the 
determinant is zero. If the load P is lower than the first buckling 

--------~--------

- , 

I' 



, -

- - -------~ .. -~-.------.-~ 

NACA TN 2354 3 

load, the determinant will be positive (because it contains an even 
number of rows; see reference 2). If the determinants are evaluated by 

' . the method of reference 3, that portion of the so-called lIauxiliary 
matrixll which corresponds to the first nine rows of table II need be 
considered only once, since it is independent of the load P. 

Solution with assumed displacements.- The above method can be sim­
plified by assuming the following expressions for the radial displace­
ments r and the rotations illt of the most highly compressed stringer 

(stringer 1, fig. 2) : 

r = sinS(nx/6L) 

(1) 
fit = (dr/dx) = (5n/6L) sin4(nx/6L) cos (nx/6L) 

in which the maximum radial displacement is taken as unity, and L is 
the ring spacing. At rings B, C, and D, respectively (see fig. 2), 
x = L, 2L, and 3L. The determinant is then reduced to that given in 
table III. In the presentation of this table advantage was taken of 
symmetry. The buckling load may be obtained from this determinant by 
the first method given above. Since, however, only the element in the 
lower right- hand corner is a function of the load P, the determinant 
will take the form [K + f(kL)], where K is a constant not dependent 
on P, 

(2 ) 

f(kL) is given in table III, and (EI)str is the radial bending 
r 

rigidity of the stringer and its effective width of sheet. The value 
of kL at buckling makes the determinant vanish and may be obtained 
from the equation 

f(kL) = -K 

A curve of f(kL) against kL is given in 
solve this equation in a convenient manner. 
load of a cylinder can be obtained from the 
determinant. 

(3) 

figure 3 and may be used to 
Consequently the buckling 

solution of a single lO-row 

It is useful to note than an upper and lower limit may be found for 
the value of kL at buckling, such that 

1.46 < kL < 4.49 
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The value 4.49 corresponds to the lowest load at which a main- diagonal 
element (in the tenth or eleventh rows) of table II becomes zero . The 

- f 

value 1.46 is the value at which f(kL) = 0 and is approximate since it . f 

depends on the assumption of equations (1). 

It may be noticed that both methods require the evaluation of at 
least one determinant. It is suggested that this evaluation be carried 
out by the method of reference 3. The following remarks concerning the 
application of this method in the present problem may be useful: 

(1) The operations table is symmetric about its main diagonal 

(2) The value of the determinant is equal to the product of the 
main- diagonal elements of the auxiliary matrix (defined in 
reference 3) 

(3) The determinant will be equal to zero when the last main­
diagonal element of the auxiliary matrix vanishes (see 
appendix A) 

Discussion of Methods 

The methods outlined in the preceding section are based on the 
simplified structure of figure 2. The following considerations underlie 
the choice of this structure and of the methods of calculation: 

(1) The most highly compressed stringer was considered of paramount 
importance at buckling, so that it was thought permissible to neglect 
all other stringers in these approximate calculations. This is equivalent 
to considering the most highly compressed stringer as a column elastically 
supported by the rings and sheet . The elasticity of the supports is 
represented by the ring and sheet influence coefficients in the operations 
table (appendix B). 

(2) Points on the tension side of the cylinder wil l undergo only 
negligible displacements and hence may be considered fixed. The rings 
are therefore assumed to continue up to a point, near the tension side, 
900 away from the most highly compressed stringer, and to be rigidly 
fixed there (fig . 2). 

(3) It would seem natural to continue the sheet up to the same point 
as the rings . Because all stringers except the most highly compressed 
one have been neglected, this would imply a single panel of sheet in 
each bay, extending over 900 • The operations table, however, is set up 
considering each panel with its edge reinforcements as a unit in which 
only the corner points have independent freedom of motion (see , e.g., 
reference 4) . Therefore the action of the 900 sheet panel would be 
determined by the displacements of its corners, with no possibility of 
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intermediate adjustment. Consequently the rigidity of the panel would 
be greatly exaggerated . The decrease in the effective shear modulus of 
the buckled sheet (reference 5) because o~ the larger angle subtended 
would not provide a sufficient reduction in the shear rigidity. The 
sheet panel was therefore taken to be smaller, the natural stopping point 
being the position of the stringer next to the most highly compressed 
stringer in the actual cylinder . Thus only the sheet which provides 
additional stiffness to the most highly compressed stringer is considered. 
This appears consistent with the assumption that all other stringers may 
be neglected. A point with independent freedom of motion was therefore 
considered in each ring at the intersection with the free edge of the 
sheet. It may be remarked that, if the rings were to be terminated 
there, the consequent reduction in the influence coefficients would in 
general be negligibl y small. 

(4) The length of the cylinder was considered constant and equal to 
six times the ring spacing. For the three cylinders investigated, PIBAL 
cylinder 10 and GALCIT cylinders 25 and 65 (fig. 1), this corresponds to 
1.5, 1.5, and 1.2 times the respective diameters. For the fuselage of a 
large modern transport this length would be approximately equal to the 
diameter. The following table may be set up on the basis of experimental 
results presented in the references given: 

Limiting Increase in buckling load 
Loading value of at lower value of L'/D Reference 

L'/D (percent) 

Compression 1.5 6 at L'/D 1.0 6 

Pure bending 2.0 12 at L'/D 1.2 7 

The buckling load is practically independent of the length if the length­
to-diameter ratio L'/D is equal to or larger than the limiting value 
given. Examples of the increase in the buckling loads for cylinders 
shorter than the limiting length are given in the third column of the 
above table. The length assumed in the calculation will be in general 
somewhat shorter than the limiting length; the error caused by this may 
be estimated with the aid of the above table to be at most 10 or 15 per­
cent of the buckling load of a cylinder longer than the limiting length. 
The effect of the length was investigated in some detail with test 
cylinder 25 of the GALCIT series (reference 8). The buckling load for 
this cylinder was calculated considering different numbers of bays and 
the results are shown in figure 4. It may be seen that the calcula.ted 
buckling loads approach some constant value in what appears to be an 
asymptotic variation and that the difference in the buckling loads 
obtained considering six or eight bays is small. It was concluded that 
the small improvement in accuracy given by a longer structure did not 
warrant the increased amount of work required to obtain it. 
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(S) The buckling load was calculated with the aid of the simplified 
structure for test cylinders 2S and 6S of the GALCIT series (reference 8) 
and for cylinder 10 of the PIBAL series (reference 9) . Those specimens 
were chosen because of their widely different characteristics (see fig. 1 
and table I). Comparisons of the results of the pr esent analysis with 
those of experiment are presented in table IV and in figures 4, 5, and 6. 
The calculated buckling loads may be seen to be consistently higher than 
the corresponding experimental values. The percentage errors obtained 
are not considered excessive , however, upon compari son with the results 
obtained earlier at PIBA1 by means of str ain- energy methods. One of those 
soluti ons (reference 10) gave better results than the present investi­
gation, but required a prohibitive amount of work . 

(6) Approximate deflected shapes at buckling obtained with the aid 
of the simplified structure of figure 2 are given in table V for the thr ee 
cylinders investigated. The same table also gives results of measurements 
made on some actual test specimens after buckling (r eference 6) . It may 
be noticed that fair agreement has been obtained between measured and 
calculated values, so that an additi onal indirect exper imental check has 
been provided on the r easonableness of the simplified structure chosen. 
It should be kept in mind that the measurements were taken after the 
cylinders had buckled, and therefore may differ from the actual displace­
ments at the instant of buckling. 

(7) Table V also shows that the radial displacements r of the most 
highly compressed stringer at buckling ar e closely repr esented by 

r = sinn (nx/6L) (4) 

where n = 4, 5, or 6 . The rotations IDt may be closely approximated by 

mt = (nn/6L) sinn- l (nx/6L) cos (nx/6L) (5) 

The values obtained with n = S represent a reasonabl e aver age of all 
experimental and calculated deflecti ons, and therefore this value of n 
was chosen for the solution with assumed displacements which was described 
previously . As a check, the buckling load of GALCIT cylinder 65 was cal­
culated by that method and was found to be 1730 pounds . The buckling load 
calculated f rom the simplif i ed structure without the assumption of dis­
placements was 1670 pounds (fig . 5) , so that the error introduced by this 
assumption is only 3.6 percent of the latter value. Cylinder 65 was 
chosen since it is the specimen for which the agr eement between assumed 
and actual displacements is the poorest (table V) . It should be remembered 
in this connection that it was shown e l sewhere (r eference 2) that the 
methods of calculation used in this report are not too sensitive to errors 
in the assumed deflected shape . 

- , 

. I 
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(8) The operations tables for the simplified structure (tables II 
and III) may be put in nondimensional form by the following process. 
Divide the tenth and eleventh rows and columns by L, and all terms in 
rows and columns (10) through (14) by the quantity Gefftd/L. The beam-
column terms appearing in the lower right-hand corner may then be written 
as (EI)str

r
!L3 times some function of kL. The ring influence coef-

ficients rr, fffi, ;t, and so forth are equal to (EI)r!d3 multiplied 

by some function of rid (reference 11). If all rows and columns are 
divided through by (EI)r/d3 it will be noticed that the operations 
table will be a function of the four nondimensional parameters 

r 4 (EI) str 
A r 

L3d (EI)r 

r 
Gefftd4 (6) 

== 
(EI)rL 

rid 

k1 

where r is the cylinder radius, (EI)r the bending rigidity of a ring 
in its own plane, d the circumferential stringer spacing, Geff the 
effective shear modulus for the sheet, t the sheet thickness, and the 
other symbols have been previously defined. The effects of shearing and 
extensional deformations of the rings, respectively, are represented by 
the two additional parameters: 

} (7) 

where Ir is the moment of inertia oi the ring cross section, Ar is 
the area of the ring, and Ar* is the effective shear area of the ring 
cros s section. Reference 11 shows, however, that the effect of these two 
parameters is in general negligible . 

It has been shown in reference 12 that the buckling load of a mono­
coque cylinder depends on the parameter A. Two additional parameters 
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were established in that reference by physical r easoning to be r/d and 
E/Ecr ' where E is the strain in the most highly compressed stringer 
at failure and Ecr is the buckling strain of a sheet panel. An experi­

mental verification of the fact that these parameters approximately 
control the buckling phenomenon in monocoque cylinders is given in refer- -
ence 13. It may be seen that two of the parameters found in the present 
development are the same as those found in reference 12, while the param­
eter r includes the quantity E/E cr ' since the shearing rigidity Geff 
was found in reference 5 to be closely approximated by 

(8) 

where 

N = 0.0275 [(2nr/d) + lJ (8a) 

and GO is the shear modulus of the sheet material. 

Curves of kL, which represents the buckling load, plotted against 
the parameters A and r are shown in figure 7 for all the cylinders of 
reference 8 with r/d = 6.32 . An insufficient number of cylinders is 
available so that the position of these curves is not definitely determined. 
It may be stated, however, that the results presented do not contradict 
the validity of the four parameters established . 

CALCULATION OF BUCKLING LOAD OF A CYLINDER WITH A CUTOUT 

Experimental Investigation 

The methods developed previously were extended to include cylinders 
with cutouts. A cylinder with a cutout (PIBAL cylinder 82, fig. 8), which 
consisted of a thin circular shell reinforced by six stringers and four 
evenly spaced rings was therefore constructed and tested. The cutout 
extended circumferentially for 900 on the compression side of the cylinder. 
Pure bending moments were transmitted to the ends of the cylinder through 
heavy rings which could be assumed rigid. The test rig was the same as 
that used in the cylinder tests of reference 13. This cylinder buckled 
when the load in the most highly compressed stringer (stringer 2 in fig. 8) 
was 5400 pounds . This load corresponded to a total applied moment of 
158,000 inch-pounds . Photographs of the buckling cylinder are shown in 
figures 9 and 10. 

. , 
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Method of Calculation 
• 

The results of the theoretical investigation indicated that the 
simplified methods evolved for complete cylinders are not satisfactory 
for cylinders with cutouts. For such cylinders, the distortion under 
load depends primarily on the geometry of the cutout, so that only dis­
placements in the vicinity of the cutout require consideration in the 
operations table. 

With consideration of the symmetry of the cylinder, an operations 
table including only the displacements rBl and rB2 and the rotation 
rntB2 (see fig. 8) was set up. The resulting buckling load was, for all 

practical purposes, the same as that obtained through the use of an 
operations table which permitted all possible generalized displacements 
at all the joints of the cylinder. Hence the assumption that only the 
joints in the vicinity of the cutout need be considered in the operations 
table was justified for the cylinder with a cutout. The actual experi­
mental deflected shape of PIBAL cylinder 82 (figs. 9 and 10) shows that 
the major distortions took place in the vicinity of the cutout, and that 
all other joints may be assumed to have had zero displacements. 

Cylinders encountered in practice, however, will be of a more compli­
cated construction than PIBAL cylinder 82, and hence the simplified 
operations table described above may not be sufficiently complete. 
Depending on the size of the cutout, it is suggested that the operations 
table be expanded so as to include all the joints surrounding the par­
ticular cutout. 

The buckling load obtained for PIBAL cylinder 82 considering only 
three generalized displacements was 8400 pounds. The di screpancy between 
the theoretical and experimental buckling loads was attributed, mainly, 
to the inaccuracy of the value of the effective shear modulus Geff used 
in the calculations. This value was 0 .71GO and was taken from equa­

tion (8). This equation is based on tests on panels buckled because of 
compression . The sheet panels i~ the present cylinder , however, are 
under the action of combined compression and shear . No values for the 
effective shear modulus of curved panels under such a loading could be 
found in the literature, but, according to data obtained from flat panels 
(reference 14), it appears that the correct value of Geff should be 
considerably lower. Furthermore, as is shown in the next section, there 
is reason to reduce the shear modulus even further . 

The calculations for PIBAL cylinder 82 were therefore repeated with 
an assumed value of Geff = O.lGO' The resulting buckling load was 
5900 pounds, which may be seen to be in good agreement with experiment. 
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Reduced Effective Shear Modulus 
• 

I f a panel of sheet i s not in a buckled state, the relation between 
shear stress ~ and shear strain y is s i mply Hooke ' s l aw: 

(9) 

If the panel is in a buckl ed state , a relat ion analogous to equation (9) 
will still hold between the average shear stress ~av and the average 

shear s train Yav' provided that an eff ective shear modulus Geff is 

used in pl ace of ' GO. In other words, 

(10) 

and Geff = GO i f the panel is not buckled. The value of Geff will 

r epr esent the complex state of str ess of the buckled panel, and will 
presumably vary wi th panel dimensions and type of loading. 

The value of Geff is the proportionali ty factor between the average 

shear stress and the average shear strain. I n problems of instability, 
however, i t is desired to know t he r elation between a small increase in 
stress d(~av) and a small increase in strain d(Yav ) ' This relation 
will again have the same form as equation (9), if only a reduced effective 
shear modulus Geffr ed is used in place of GO . In other words, 

(11) 

Thus t his new modulus represents the resistance the panel will off er 
against di stortions additional to those r epresented by Yav . According 

t o the previous discuss i on, this new modulus will also depend upon the 
dimensions of the panel and upon the amount of shear ing and compressive 
loads present . 

If equation (10) is written in differential form as 

d(~ ) - I. d(Geff ) + G l d( ) 
av - ~av d(Yav ) eff Yav (12) 

comparison with equat ion (11) indicates that 

(13) 

.. 
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The following remarks may be made about the reduced effective shear 
modulus Geff d! re 

(1) Geffred Go when the panel is not in a buckled state 

(2) Geffred = Geff when the average shearing strain in the panel 

is zer o immediately before buckling 

(3) Geffred = Geff when there is no change of shearing strain 

dur ing buckling of the structure under consideration 

(4) Geffred < Geff in all other cases, since in general the modulus 

Geff decreases with increasing shear strain Yav' so that the second 
term in the right- hand side of equation (13) is negative 

The latter case applies to the cyli nder with a cutout . The low 
value assumed for the shear modulus in the calculations is therefore 
plausible . 

Polytechnic Institute of Brooklyn 
Brooklyn, N. Y., August 31, 1948 
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APPENDIX A 

BASIC THEORY 

The procedures developed in this report for the calculation of the 
buckling load of a monocoque cylinder are based on methods developed in 
reference 2 which make use of an operations table similar to that used 
in Southwell ' s method of systematic r elaxation. These methods are out­
lined here , more rigorous proofs being given in reference 2 . Rigorous 
proofs are only given here for some modifications of these methods which 
were not discussed in that reference. 

Consider several points in the structure in question distributed so 
as to cover the entire structure. Let these points be numbered consecu­
tively from 1 to n . The generalized force exerted on joint i by a gener­
alized displacement Xj at joint j (all joints but j being considered 
temporarily rigidly fixed) may be denoted by aijxj . The quantity aij 
is called an influence coefficient. If Fi is the generalized external 
force acting at joint i , the equilibrium condition for the ith joint is 

o (Al) 

provided that the principle of superposition is valid . If equation (Al) 
is written for every joint in the structure, a set of linear simultaneous 
equations will result with generalized displacements as unknowns . The 
array, or matrix, of the coefficients of this set of equations is called 
the operations table and may be written as 

all a12 ali alj aln 
a21 a22 a2i a2j a2n 

An ail ai2 aii . aij ain (A2 ) 

ajl aj2 a· -Jl a - . JJ ajn 

anl an2 ani anj ann 

As a consequence of Maxwell ' s reCiprocal theorem a' -lJ == aji · 

.. ----- -- ----~-

- , 
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Equation (AI) represents the equilibrium conditions for the given 
structure in terms of displacements. In general, the determinant An 
will not be equal to zero; then, only one set of displacements may be 
found which will satisfy the equilibrium conditions. If the determinant 
An vanishes, however, more than one such set of displacements will exist . 
This is physically possible only at neutral equilibrium, or, which is 
the same, at a buckling load. This leads to what was called in refer­
ence 2 the Determinant Method, the basis of which is the fact that the 
lowest load at which the determinant An vanishes is the lowest buckling 
load . 

A proof will now be given of the fact that in general at the lowest 
buckling load the last main- diagonal element of the auxiliary matrix of 
the method for evaluating determinants given in reference 3 is equal to 
zero. Let the symbol Ai stand for the determinant 

all a12 ali 

a2l a22 a2i 

A· l (A3) 

ail ai2 a· . 
II 

The value of this determinant is equal to the product of the first i main­
diagonal terms of the auxiliary matrix . If auxiliary- matrix elements are 
denoted by the symbol aij, then 

i 
A' = IT a·· = all a22 . . . akk . . . aii 

l . 1 JJ 
J= 

(A4) 

Let Ak be the first of these determinants to vanish; then theorem 2 
of reference 2 gives 

Ak = Ak+l = ... = An = 0 (AS) 

where An is the determinant given in equation (A2) . Two cases may 
then be considered: 

Case 1; k = n . - In the case where k = n, An is the only one of 
these determinants which vanishes . By equation (A4) the only factor 
which is contained in An and in no other Ai determinant is ~n' 

which, as was to be proved, must ther efor e vanish. 

Case 2; k < n. - In the case where k < n, the method of reference 3 
fails to give any terms beyond akk, whi ch of cour se is zero . Her e ann 
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is obviously not the first term to vanish, but in this case several of 
the higher buckling loads are identical with the first. This case is 
expected to occur rather infrequently _ 

The Energy Method of reference 2 is based on the condition that the 
second variation of the total potential energy must vanish at buckling . 
This condition may be written as 

o (A6) 

This equation is satisfied at buckling by the buckling displacements . 
In the Energy Method some of these displacements , say xp ' xp+l' 
Xn , are guessed; then the others are obtained f r om the conditions 

o k 1, 2 , ... , p - 1 (An 

The matrix of the coefficients of these simultaneous equations , including 
the constant ter ms , is the reduced matr ix A' , where : 

A' 

in which 

and 

all a12 

a21 a22 

ap- l , l ap- l , 2 

a ' 1 p, a' 2 p, 

a'ip a ' . pl 

a'p,p 

al,p-l all , p 
a 2,p- l a'2,p 

. - (AB) 
ap- l ,p- l a'p- l,p 

a'p,p_l a'p,p 

It will now be proved that the Determinant Method may be applied to the 
operations table of equation (AB). 
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It is well- known (see r eference 15) that any quadratic form Q may be 
put in the form 

(A9) 

wher e the bi quantities are constants, and 

n 
Ll" = ~ C x L j j (A10) 

j=l 

where the Cj quantities are constants. It is assumed t hat there are 

n linearly independent quantities Li. This assumption entails no loss 
of generality since in t he case in which it is not true some of the 
constants bi will be zero . 

By means of equation (A9) and table 2 of reference 2 the following 
table may be set up: 

Sign of bi Sign of Q Classification of Q 
Type of 

equilibrium 

All, less Q < 0 always Negative definite Stable than zero (Q = 0 if Xj == 0) nonsingular 

Varying; none, Q may be positive , Indefinite Unstable zero negative, or zero nonsingular 

All, greater Q > 0 always Positive definite 
Unstable than zero (Q = 0 if Xj - 0) nonsingular 

Some, zero; all Q == 0 or Negative definite Neutral others, negative Q < 0 singular 

Some, zero; Q may be positive, Indefinite singular Unstable 
others, varying negati ve , or zero 

Some, zero; all Q == 0 or Positive definite Unstable 
others, positive Q > 0 singular 
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Two conditions for neutral equilibrium have been thus set up : 

(1) The vanishing of the determinant An of the quadratic form Q 

(2) The fact that some of the 
are negative 

b· 's l 
equal zero, while all others 

As both conditions are necessary and sufficient, they are equivalent and 
may be used interchangeably. 

When some of the displacements are guessed as previously explained, 
the quadratic form Q becomes the reduced quadratic form Q' , where 

Q' 

where the bi ' quantities are constants and 

L· , 
l c ' + p 

p- l 

L Cj'x. 
. 1 J J= 

(All) 

(A12 ) 

The statements of the above, table may now be applied to the quadratic 
form Q', since Q' is the value the quadratic form Q will take on 
when the displacements xp ' ... , xn . are assumed. Neutral equilibrium 
will then exist when some of the bits are zero and all others are neg­

ative. But this condition is equivalent to the condition that the determi­
nant corresponding to the quadratic form QI must vanish. This determinant 
is obtained by multiplying out t he right-hand side of equation (All) and 
expressing the ~esult in the form , 

p-l p-l 
Q' = L L aijxixj 

i=l j=l 

p-l 

+L 
i=l 

a l . X· lp l 

p-l 
+ ~ alpixi + a lpp 

j=l 
(AI)) 

The determinant corresponding to Q' will then be seen to be identical 
with A' of equation (AS). 

It therefore follows that the vanishing of the determinant AI of 
equation (AS) corresponds to neutral equilibrium. If the displacements 
xp ' xn were not chosen exactly equal to the displacements of 
the structure at buckling, an approximate value of the buckling load will 
be obtained rather than an exact one . It was proved in reference 2 that 
this approximate load will be higher than the actual one. 

-. 
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APPENDIX B 

GENERAL FOR11ULAS AND NUMERICAL EXAMPLE 

In this appendix is presented the procedure for the determination 
of the influence coefficients required in setting up the operations 
tables II and III. Since many of the formulas used in the analysis are 
scattered throughout the literature, some of these are given here, 
together with appropriate reference. When a formula is not listed, refer­
ence to its source is given. A numerical example is also given illus­
trating both methods suggested for the calculation of the buckling loads 
of cylinders without cutout. 

Influence Coefficients 

The operations tables (tables II and III) contain three types of 
influence coefficients, which represent the effects of the rings, the 
sheet covering, and the stringers . The methods by which each type is 
determined are outlined below. 

Ring influence coefficients.- The ring influence coefficients are 
r-.. /""'> /""'> 

characterized by the symbol r-.., as, for example, rrn, rtM, or tnF' 
These coefficients may be determined from reference 11, in which they 
may be seen to depend on the three parameters ~, y, and £, where ~ 
is the central angle of the ring segment, and y and S are defined in 
equations (7). Any one of the three following ways may be used for the 
calculation of these coefficients : 

(1) General formulas are given in equations (20), (27), (28), and 
(29) of reference 11. As an example, the formula for rtM is repeated 
here with a slight change in notation: 

where 

r3 
(EI)r 

(Bl) 
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and 

in which the quantities f are functions of the central angle ~ and 
are given in reference 11 by equations (24) and, for specific values 
of ~, by table II and figures 3 to 13 . 

(2) Influence coefficients obtained from the formulas mentioned 
under item (1) are tabulated in tables III and IV of reference 11 for 
specific values of the parameters ~, y, and ~. 

(3) From the tabulated values mentioned in item (2) above, curves 
were plotted which are presented in figures 14 to B5 of reference 11. 
It should be noted that in general these curves are accurate only for 
values of ~ ~ 150 . 

Sheet influence coefficients.- The shear in the sheet covering is 
represented by the influence coefficients containing the quantities a 
and AI' as, for example, 2ar 2AI or 2nta~I dI , The quantities a 

may be determined in good approximation from the formulas 

-0.5(1 - 0 .01666 . . . ~2) (B2 ) 

an -0.00B333·· · ~(l + 0.0142B6~2) 

taken from page 27 of reference 11 . It should be noted that in this 
reference 

nq!(L2q), 

ar , at, and 

respectively. 

are denoted as rq/(Lq), tq/(Lq), and 

The quantity AI is given by 

(B3) 

where the effective shear modulus Geff is given by equation (B) of the 

present report. 
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The buckling strain Ecr of a sheet panel appearing in this equa­

tion was obtained by means of Redshaw's formula: 

(B4) 

where 

k
1
n

2 
(t)2 

Eflat = ( 2) d 12 1 - V 
(B5) 

as shown in reference 16, in which k' is the end-fixity coefficient, 
V is Poisson's ratio, and 

1 1.7 x lO-7(r/t)2 
Ecurved'= O.6(t/r) - ) 

1 + O. 004(E/Fcy 

as shown in reference 17, in which Fcy is the yield stress of the 

material. 

(B6) 

The effect of normal stresses in the sheet covering is taken into 
account by an effective width of sheet as discussed in the next section. 

stringer beam-column influence coefficients.- The beam- column 
effects in the stringers are represented by the influence coefficients 
containing the load P, as, for example, (P/Dl)(1 - c) or Pks/Dl ' 
A complete list of beam-column influence coefficients is presented in 
tables VI, VII, and VIII in which the sign convention as well as defi-

I 

nitions of symbols are given . All these coefficients are functions of 
the quantity k defined in equation (2). The following formula which 
was derived in reference 18 on the basis of work contained in reference 19 
is suggested for the calculation of the effective width 2w : 

2w = (l/d(d/r) f.3t + 1.535 [(t/d)(r, - o.3t)rl/2J/3 } (B71 

If the load P causes a stringer stress which is higher than the 
proportional limit of the material, the modulus of elasticity E which 
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appears in equation (2) must be reduced in an appropriate manner. In 
this investigation Von K&rm£n's formula was used : 

CB8) 

where Et is the tangent modulus. 

Numerical Example 

As an example of the application of the methods suggested for the 
calculation of the buckling load of cylinde.rs without cutout the buckling 
load is determined here for GALCIT cylinder 65 of reference 8 . The 
characteristics of this cylinder are given in figure 1 . Table I is 
readily set up with the aid of t hese characteristics and the equations 
listed in the previous section. The influence coefficients required 
for tables II or III can then be calculated. 

Ring influence coefficients.- The values of the ring influence 
coefficients corresponding to ~I' YI' and ~I (see table I) happen 

to appear in tables III of reference 11 . However, since these tables 
do not contain coefficients corresponding to ~II' it is necessary to 
use values interpolated from the appropriate curves of reference 11. 
The following values were obtained for the r i ng influence coefficients: 

Ring segment I Ring segment II 

~ (dr) nnMI Elr = 6 .393 ~ (drr) nnMII Elr = 8 .65 

~ ~dr2) rnM - = -20.38 
I Elr 

~ eri) rnM -- = -33 . 0 
II Elr 

""" dI ( 2) tnMI Elr = 109.0 
""" dII ( 2) 
tnMII Elr 33.0 

~l1l~i~) = 98 .43 ~ (drr3
) rr --

MIl Elr 
170 
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have 

~ ~d trM I E 
1
3
) = - 656 .6 

1r 

~ (d 
ttM1 E 

~ (d rnF I E 

~ ~d rrF
1 

E 

12) = - B.53l 
1r 

1
3
) = 74.86 

1r 

~ ~d trF1 E 1
3
) = -659 .7 

1r 

Sheet inf 
the follo 

luence coefficients .- The quantities (l of equation (B2) 
wing values : 

Bay I Bay II 

(lr = 0.0261 No sheet in this bay 

CIt = - 0.499 

On = - 0.0021B 

Stringer beam-column influence coefficients .- For an as sumed load 
s a typical set of calculated r esults is given below (see 

VI and equations (2) and (BB)) . 
P = 1550 pound 
tables I and 

P (J 

(lb) (psi) 

1550 37,300 

Ered 
(psi) 

Ered 1str r 

4000 

k kL sin kL cos kL 

0 .6225 2 .490 0 .60646 - 0 . 79511 
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The beam-column influence coefficients required for table II are 

P(l - c) 
Dl 

1337 .6 

P(kL - s) 
kDl 

2254.6 

2P (s - kLc) 
kDl 

6191 .7 

No beam- column influence coefficients need be calculated if table III 
and figure 3 are used . 

Calculation of buckling load by table 11 .- The state of stability 
of the structure at a load of P = 1550 pounds may now be investigated 
by introducing all the above influence coefficients into table II and 
evaluating the corresponding determinant. The results corresponding to 
the assumed load of 1550 pounds, as well as those for the loads of 1650, 
1680, and 1715 pounds, are presented in figure 5. In this figure are 
plotted both the values of the determinant and the values of the last 
main- diagonal term ann of the auxiliary matrix of reference 3. The 
intercept of the curves in this figure may be read off and corresponds 
to the buckling load . It should be noted that only the stringer beam­
column influence coefficients vary as the assumed load is changed. 

Calculation of buckling load by table 111 . - The value of the 
quantity K of equation (3) was found by the method of reference 3 to 
be - 5.472. From figure 3, this value may be seen to correspond to 
kL = 3.4, from which Pcr = 1730 pounds. Care must be taken that a 

reduced modulus (equation (B8)) be used if the stress at buckling is 
above the proportional limit . 
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A
1

, A
2

, • . . 

Ai, . • • An 

A * r 

A' 

A, B, C, D 

E 

(EI)str 
r 

F­l 

G effred 

• 

APPENDIX C 

SYMBOLS 

determinants or matrices 

effective cross-sectional area of stringer 

effective cross- sectional area of ring 

effective shear area of ring cross section 

reduced matrix 

rings 

Young's modulus 

bending rigidity of a ring in its own plane 

radial bending rigidity of stringer and its 
effective width- of sheet 

reduced modulus 

tangent modulus 

yield-point stress 

generalized external force 

effective shear modulus 

reduced effective shear modulus 

shear modulus of sheet material under no com­
pressive load 

moment of inertia of ring cross section plus 
effective width 

23 
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Istr r 

K 

L 

N 

P 

Pcr 

Q 

Q' 

R 

T 

a· . lJ 

a'· lp 

bi, b· , 
1 

C ., c j 
, 

J 

d 

f 

f(kL) 

i, j 

NACA TN 2354 

moment of inertia of stringer plus effective width of 
sheet for radial bending 

constant 

ring spacing 

linear function 

ratio of total cylinder lengt h to cylinder diameter 

moment causing bending of stringer (vector pointing 
in tangential direction) 

moment causing bending of r ing in its plane; also 

0 . 0275 [(2nr/d) + lJ 
axial stringer load 

load in the most highly compressed stringer at the instant 
of buckling 

quadratic form 

reduced quadratic form • 

radial force 

tangential force 

element of operations table 

element of last row or column of reduced matrix 

constants 

constants 

circumferential stringer spacing 

function of ~ 

function of kL 

indices 

.. 

----~----~------~--~-------.---~ 
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k' 

n 

p 

r 

r--. 
rr, 
and 

t 

2w 

x 

x· J 

r 

Ii. 

a· . lJ 

E 

,......, r--. 
rm, rt, 
so forth 

Ecurved 

25 

end- fixity coefficient 

r otation causing bending of stringer (vector pointing 
in tangential direction) 

number of stringers ; number of generalized di splacements ; 
r otation causing bending of ring in its plane 

index 

r adius ; radial displacement 

ring influence coefficients 

sheet thickness ; tangential displacement 

eff ective width of sheet 

longitudinal axis of stringer 

gener alized displacement 

parameter 

parameter 

(GeffLtdI) parameter \ 

auxiliary- matrix element 

last main- diagonal element of auxili ary matrix 

funct ions of ~ required for sheet influence 
coefficients 

central angle of a ring segment (d/r) 

parameter; shear strain 

strain in most highly compressed stringer at failure 

buckling strain of a sheet panel 

buckling strain of nonreinforced circular cylinder 
under uniform axial compression 
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€flat 

V 

~ 

a 

'r 

Subscripts: 

A, B, C, D 

F 

11 

av 

exp 

1, 2, 3 

I, II 

NACA TN 2354 

buckling strain of flat panel under uniform compression 

Poisson's ratio 

parameter 

compressive st-ringer stress 

shear stress 

rings 

fixed 

movable 

average 

experiment 

stringers 

regions 
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TABLE I 

CHARACTERISTICS OF CYLINDERS 

Cylinder r t dI dn 
(1) (in . ) (in . ) (in . ) (in . ) 

GALCIT 10 0 .010 2. 61 13 .05 
65 

GALCIT 15.92 0.010 2 . 53 22 .77 
25 

PIBAL 10 0 . 012 3. 93 11. 79 10 

Ecr E 2w Aeffstr 
Cylinder k' €flat Ecurved 

(2) (in . ) (sq in . ) 

GALCIT 
5.5 0 . 730 x 10-4 2. 430 x 10-4 2 .82 x 10-4 31.5 x 10- 4 0 .875 0 .0415 65 

GALCIT 6 0.847 1.050 1.56 17.0 1.031 0 . 0429 
25 

PIBAL (3) 0 .50 3.0 3.26 22.4 1.547 0 .1596 10 
--

lAll cylinders are aluminum (E ~ 10.5 x 106 psi, GO ~ 3.9 x 106 psi , 
v = 0. 3, Et from reference 20) . 

2In general € must be guessed. In the present investigation € was 
available from experimental results (r eferences 8 and 9). 

3k' not r equired since 'flat and 'curved are given in reference 9 . 

~I ~n 
(deg) (deg) 

15 75 

9 81 

221 
2 671 

2 
---1.-.---

Istrr Ir 

(in .4) (in . 4) 

5 .669 ':' 10- 4 0.2194 x 10-4 

5 .898 0 .2194 

22 .40 0.8034 

L n 
(in . ) 

4 24 

8 40 

5 16 

Geff )'1 )'n 
(psi) 

2 . 68 x 106 10, 180 255,000 

3 . 90 9,568 775,000 

1. 93 9, 862 88 ,760 

~ 

~ 

0 . 25 

0 . 25 

0 . 32 

/\.1 

, . 

(lb/in . ) 

17,500 

12,334 

18,190 
-

s; 
o 
:<> 
>-3 
:z: 
f\) 

w 
\Jl. 
f='" 

f\) 

'-0 



TABLE n 
OPERATIONS TABLE FOR THE SIMPLIF IED STRUCTURE 

(I) (2) (3) (4 ) (5) (6 ) (7) ( 8 ) (9) ( 10) 

r 02 r B2 t 02 n
B2 t B2 n

D2 
r t C2 n

C2 mt
B I C2 

(I) - ~"-4 1 rl "" 0M , , 
R - rr Mn 0 - rl "'n 0 0 - rn M O 2o., A, - 2o.,o.,A, - 2o.,o.nA,d, 0 

D2 - 20. ' A + 20. a. A + 2o.,a,.A d 
(2) - 2rr" 2rn", 2ft "" 

2RB2 
0 - 2(; , 0 - 2 fn "",o -2ft 0 

, 
0 "'n "" 2o.,A, - 2o..o.,A, - 2a.,o.nA,d, 

- 4o. ~ A + 40.,0. A, d +40. ,0. A 
(3 ) Ir '" -U"" - ~ "" , - , 
T D2 

-t rMD 0 - t l 0 0 - 1nMo - 2o. ,a.,A, 2o.,A, 2o. ,o.~ , d , 0 
+ 2a: a. A - 2~'A - 20. ,0. A d , 

(4) 2n-r ", 2rfn"" 2nl"" , , 
2NB2 0 - 2 nrM~ 0 - 2 nn - 2nT 0 - 2o.no:,.A,d, 2a:na. , A, ~ 2a.nA,d, 0 2 M e 2 "' u 

+ 4o.no. , A d, - 4o.nA d - 4o.na. Ii d 

(5) 2t r '" 2tn "" 2U "" ~ , , 
2T B2 

0 -2Ir ",. 0 - 2tn "'n - 211 0 - 2o.,o., A, 2o. ,A, 2o. ,a.nA,d, 0 ,"'. 
+40.,0. A - 4a. ,o.nA d - 40. , A 

(6) ~ Ml ~fM I nn ", 
~ , , , 

ND2 
- nrMa 0 - nf Me 0 0 - nn - 2a:na:,A,d. 2a:no., A,d, 2o.nA,d, 0 
+ 2a.no.,A,d - 2ano. ,A d - 2:;' A d' n 

(7) - 2 ':! "" 2ft "" 2rn ", , , 
- 2 rn ' 2R 2a. rA, 2a. , A, - 2o.ra , A, - 2a.f1nA, d, - 2o.,a. ,A, - 2o.,a."A,ci, - 2rr", . - 2 Ft 0 .... .... 

C2 - 4", A +4o.,<1 ,A + 4o.,o.nA,lI. 
(8) , , 2~r"" 2!.l"" 21n"" 

2T C2 - 20. ,0., A, - 2o. ,o.,A, 20., A, · 2o.,a.nA, d, 20. , A, 2a: ,a.nA, d, - 2tr - 2it - 2tn 0 "', "'. "'. + 40. o.,A - 4<1' A - 40. a. Ad 
(9) , , , , 2 ~ ... , 2 ~ "" 2 ~"" 

2NC2 - 2a."o.,A,d, - 2 o.no., A, d, 2o.no., A,d, 2a.nA,d, 2o.na., A I d, 2 o.nA,d, - 2nr - 2 nl - 2nn "" 0 "', "', 
+4o:,.p.., A,d, - 4a:no. ,A,d, - 4<A,d: 

(10) 
- 2P() _kL, M 0 0 0 0 0 0 0 0 0 

tBI 
kD, 

(II) 
- ..E...(kL - )) M 0 0 0 0 0 0 0 0 0 

tC I 
W, 

(12) 
- 2rr" 2 m " 2 r t" , 

RBI 
0 , 0 0 - 2a:, A, 2a.,o. ,A, 2a.,o.nA,d, 0 

+4a., A, - 4a,o.nAA - 4o.,a. ,A, 
(13) 

-2(;r, 2 rr" 2 rnr) 
RCI 

, , 
E(I - c) -2a , A, - 2a., A, 20.,0., A, 2o.,o.n A, d, 2o.,a.,A, 2o.,tlnA,d, 

+ 4a.: A, -4a:,a:,A, - 4o.,o.nA,d, 0, 

<If 
-;-r r\, r nFJ , 

RDI 2 " 0 0 0 - 2a.,A, 2a.,a. ,A, 2a: ,o.n A,~ 0 
+2a'r A, - 2a:,a. , A, - 2a.,a. nA, d, 

" 

(II ) (1 2) 

mt
ci 

rBI 

0 0 

- 2rr" 
0 

+4ri, A, 

0 0 

0 
2M f , 

- 4a.na., A,d, 

0 2 1-r " 

- 4o.,a:, A, 

0 0 

, 
0 - 2o., A, 

0 2a. p.., A, 

0 2a:"a.,A,~ 

- £"(kL- )) 
kD, 

0 

- 2P() - kLC 
kD, 

-.E.(I _ C) 
0 , 

-2r ~ "" 
_E(I _ C) - 4a:, A, 

0 , - 2Pk)/ D, , 
2a:, A, 

0 
+Ph/ D, 

P 
D,(I - C) 0 

(1 3 ) 

rCI 

, 
- 2a., A, 

, 
- 2o., A, 

2o. ,a:,A, 

2a.P.,A,d, 

2o. ,o., A, 

2o.na:, A,d, 

- 2 (;" , 
+ 4a:, A, 

2tr r , 

- 4o.,a:,A, 

2 nrFI 

- 4a:na.,A, d, 

~(I- c) 

0 

, 
2<I, A, 

+Pk)/ D, 

2rr"" 
- 4a:' A 
- 2Pk3/ D, , 

2o., A, 

+Pb/ D, 

( 14) 

r 0 1 

-"VI 
+ 20:', A, 

0 

tr " 
- 2a: ,a:,A, 

0 

0 

nr F"I 

- 2a.no.,A,lI. 

2 

- 2a., A, 

2a: ,o.,A, 

2a.na:,AA 

0 

.E.(I _ c) 
0, 

0 
. 

2 

! 2a: , A, 

+Pk3 / D, 

- r' tt l 

-2o., A, 
-Pk~~ 

\...U 
o 

~ o 
:x> 
>--3 
Z 
~ 
\...U 

~ ~ 



TABLE m 
OPERATIONS TABLE FOR SOLUTION WITH ASSWED DISPLACEMENTS 

( I) (2) (3) (4) (5) (6) (7) (8) (9) 
r

D2 
r
B2 tD2 n

B2 tB2 n
D2 • r C2 tC2 n

C2 

( I ) - rr M1 rl"" rn"" 

RD2 
- r1 0 - rl",. 0 0 - rn"'l1 2CI~A , - 2CIra.,A, - 2CI,.ct"A,d, "'/ 

+ ~CI A + 2a.,.cl"A,d - 2CI,II 
(2) - 2;" ... , 2m"" 2rt.... , 

2 RB2 - 2Fr .... 0 - 2rn .... - 2Ft",. 0 2a.~A, - 2CIr a.,II, - 2CIrcx"A,d, 
- 4CI~A + 4a.,a.~A,d + 4CIrCI A 

(3) - I_t"" - In ... , 

T D2 - tt"" 0 0 - In .... - 2CI tCI r A, 2 CI: A , 2a.,CInA,d, 
- 20:.:11, - 2a..,.CInA d 

(4) - 2"n ... , - 2nt"" 

2NB2 - 2nn .... - 2I1t .... 0 - 2CIrfI.rA,d, 2~A,d, 2~A,d~ 
- 4~A,d' - 4a"cx;A d 

(5) - 2~t "" 

2T 82 - 2tt .... 0 - 2CItCIr !l, 2~A , 2a..p:nA,d, 
-4~A 

(6 ) - nn"" 

ND2 
-nn 
- 2~A,d' 

- 2cx"CIr A,d. 2cx"a.,AA 2CI~A ,d: 

(7) - 2~ .. , 2 fl"" 2rn"" 

2RC2 - 2rr",. - 2 rt",. - 2 r'n .... 
- 4CI~A + 4CIr<!tA +4CI,a:,:...,d, 

(8) - 2 ft"" - 2tn"" 

2T C2 - 2 tt",o - 2tn",. 
- 4a.' A , - 4a..,cx"A d, 

(9) 2M"" 

2NC2 - 2"n .... 
- 4a.~A,d~ 

(10) 

1 
---

f(kL)= ~ -091592 3ln kL -0.44020CO$kL-0.47180kLsinkL+ 1.3561 1 '( . ) 
D, kL 

(10') 
1 

' ~ 1.0257CIr A,- rrf , 

- 0.84926CI~A,-0.06250 rr f, 

-1 .025 7CIt CI r A, + tr 
f, 

084926CInCIr A(d,+006250n-r
f

, 

O.84926a.tCIr A, +0062SOtr
f

, 

- 1.0257a.nCI r A,d,+ nr 
f, 

- O. II398CI~A,-O.97426 rr_ 
" 

0.II398a.tCIA+O.97426 tr
f

( 

0.11398CInCIr ll,d,+0. 97426nr f, 

11 
(EI~", ,_ 
~f(kL)-0.94370CIrA,- 1.476Sr r "', 

~ 

I 

s; 
o 
:x> 
~ z 
f'\) 

\...oJ 
V1. 
+:-

\...oJ 
I--' 
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TABLE IV 

COMPARISON OF CALCULATED AND EXPERIMENTAL BUCKLING LOADS 

Method of Calculated Experimental Difference Cylinder calculation Por Pcr (per cent) 
(lb) (lb) 

GALCIT 25 Table II 955 769 24 .2 

GALCIT 65 Table II 1670 1371 21.8 

GALCIT 65 Table III 1730 1371 26 .2 

PIBAL 10 Table II 4850 3754 29 .2 

TABLE V 

ASSUMED, CALCULATED, AND EXPERIMENTAL DEFLECTED SHAPES 

[For sign convention and nomenclature see fig . 2J 

-..-
Shape r B re rD mB me 

sin4(6~) 0.06250 0 .56250 1 0.22672(1/1) 0.68016(1/1) 

sin5(fL) 0.031250 0 .48713 1 0.14170(1/1) 0. 73636(1/ 1 ) 

sin6(~) 0.015625 0.42188 1 0.085020 (1/1) 0 . 76520(1/ 1 ) 

PIBAL cyl. 10 
- 0.016949 0 .50229 1 0.15086(1/1 ) 0 .800n(1/L) (Calculated) 

GALCIT cy1. 25 0 .066323 0.48355 1 0.093608 (1/1 ) 0 .82808(1/1) (Calculated) 

GALCIT cy1. 65 - 0.16089 0 .30640 1 -0. 21075(1/1) 1.1631(1/1) 
(Calculated) 

t-
GALCIT cyl. 25 0 . 222 0.667 1 -------------- - -----------(Experimental) 

GALCIT cy1. 27 
0.0370 0.204 1 (Experimental) --------- ----- ----------- -

GALCIT cyl. 30 0 .0588 0 .412 1 ------------ - -- -------(Experiinental) . 
GALCIT cyl. 35 0 .0893 0 .446 1 ------- ------- ------- -----
(Experimental ) 



5 NACA TN 2354 

TABLE VI 

BEAM- COLUMN INFLUENCE COEFFICIENTS 

Displacement Unit 

Both ends 
6A fixed 

rnA 

°B 

mB 

°A 
End A 
fixed 

rnA 
End B 
pin-

oB 
jointed 

°A Both 
ends 
pin-

°B jointed 

1~ 2(1 - c) - kLs 
D2 1 - (kL/t) 

k2 piE I 

x 

o,F 

[Compr ession] 

Forces 

FA 

_p ks 
D1 

-p ~ 
D1 

p ks 
D1 

1 - c - p --
D1 

_p -L 
tD2 

_p l 
D2 

p -L 
tD2 

P 
L 

p 
- -

L 

5 = sin kL 
c cos kL 
t tan kL 

I1A 

1 - c - p --
Dl 

_ E s - kLc 
k D1 

P .L=.....£ 
D1 

P Lk - s - -
k D1 

_p l 
D2 

- p ~ 
D2 

p J:.. 
D2 

0 

0 

Sign convention 
Forces on constraints 

(1) 

FB 

P ks 
Dl 

p ~ 
D1 

_p oks 
D1 

1 - c p --
Dl 

p -L 
tD2 

pl 
D2 

-p~ 
t D2 

_ E 
L 

p 

L 

I1B 

1 - c - p --
Dl 

P Lk - s 
k D1 

p 1..-=--.£ 
D1 

P 5 - kLc - -
k D1 

0 

0 

0 

0 

0 

p __ r ___ L __ --.:t_ p 

A B 

P, positive as shown 
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Displacement 

" 

°A 

rnA 

°B 

f--

mB 

°A 

rnA 

BB 

°A 

°B 

x 

o,F 

TABLE VII 

BEAM- COLUMN INFLUENCE COEFFICIENTS 

[Axial end load P equal to zerol 

Forces 
Unit 

FA ' l'1A 

Both ends -12 EI - 6 EI 
fixed L3 L2 

- 6 EI -4 EI 
L2 L 

12 EI 
L3 

6 EI 
L2 

- 6 EI - 2 EI 
L2 L 

End A - 3 EI - 3 EI 
fixed L3 L2 

- 3 EI - 3 EI 
End B L2 L 
pin-

jointed 3 EI 3 EI 
L3 L2 

Both 0 0 
ends 
pin-

0 0 jointed 

Sign convent ion 
Forces on constraint s 

FB 

12 EI 
L3 

6 EI 
L2 

- 12 EI 
L3 

6 EI 
L2 

3 EI 
L3 

3 EI 
L2 

- 3 EI 
L3 

0 

0 

NACA TN 2354 

l'1B 

- 6 EI 
L2 

- 2 EI 
L 

6 EI 
L2 

-4 EI 
L 

0 

0 

0 

0 

0 

A :i========_L __________ ~1 B 
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Displacement Unit 

Both ends 
°A fixed 

rnA 

°B 

mB 

°A 
End A 
fixed 

rnA 
End B 
pin-

°B 
jointed 

°A Both 
ends 
pin-

°B jointed 

ID1 1 = 2(1 - c') + kLs' 
D2 ' = (kL/t) - 1 

k2 = p/EI 

x 

o,F 

TABLE VIII 

BEAM- COLUMN INFLUENCE COEFFICIENTS 

[Tension] 

Forces 
(1) 

FA MA 

ks ' - p Cc' - II - p -
D1 ' D11 

- p (c I - 1) _ ~(kLC I - s ') 
Dl ' k D1 1 

kS I p - p (c l - 1) 

Dl' Dl ' 

- p (c I - 1) ~~s I - kL) -
D11 k D11 

_p _ k_ _ p -L 

Sl 
C' 

t ' 

t'D2 1 

_p l 
D21 

k 
p t'D21 

P - -
L 

p 
-
L 

sinh kL 
cosh kL 
tanh kL 

D2 1 

-p ~ 
D2 1 

pl 
D2 1 

0 

0 

Sign convention 
Forces on constraints 

P 4 
A 

FB 

ks ' 
P Dt 

1 

P (c l - 1) 

Dl ' 

kS ' - p -
~ I 

P 
(c I - 1) 

D11 

p _ k _ 
t ' D2 1 

1 
p D2 1 

_p _ k_ 
t ' D2 1 

P -L 

p 
- -

L 

P, positive as shown 
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MB 

- p Cc l 
- II 

Dli 

_ f( s I - kL) 
k ~I 

p (c l - 1) 
D I 

1 

_ ~(kLC I -
k Dl ' 

S l) 

0 

0 

0 

0 

0 

~p 

B 
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rs1 
~J~l1 ~ 

/ V 

t = 0 .012 "_ 
24S -T36 

alclad Stringer; 
17S -T4 

3 I I 

rs1-.i1" 
~tS 
Ring; 

24S - T4 

8 r- "1 
~ 
/. , 
/ 

/ 
/ 

/ 

/ 
/ 
/ 

'" 
'" 

Cylinders 25 and 65 
0.420" 

O .028"~~.320" 
Stringe;;t" 

17S-T 

0.366 " 
ri--1 
rzzza,0 .0796 
Ring; 
17S-T 

-: 
/ 

~ 
~ 
/ 

" " 

; 
j 
--: 
~ 

64 " 

~ 
~ 
v 
r/ 

PIBAL cylinder 10 

I t = 0 .0 10 II 

17S-T " 

v 
V 

~ 

~ 

GALCIT cylinder 25 

r----- 40" -----..1 

-j 4" r t = 0.010 II 
17S-T 

Duralumin V 

V 
V 
V 

GALCIT cylinder 65 

Figure 1. - Cylinde r characteristics. 
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Region II 

I I I . Region I 
P -~~=:..=.~-==-==:tJ====-=I~~=~===-==.::tt.=:..=-=-=-:tFo-p 

IAL IBL IC
L 

D C' B' A' l-- -+-- ---+- Stringer 1 
L-A 

r,R 

Sign 
convention 

Section A-A 

Position of 
stringer 2 in 

complete cylinder 

Figure 2. - Simplified structure for setup of operations tables. 
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NACA TN 2354 

L 
v 

/ 
V 

/ 
V 

/ 

V 
LV 

/ 
V 

V 

~ 
I I 

3.6 4.0 4.4 4.8 
kL 

Figure 3. - Plot of f(kL) against kL. f(kL) = (k~~2 (-0 .91592 Si~~L - 0.44020 cos kL 

- 0.47180kL sin kL + 1. 3561). 
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'c 
~Table II 

c 
'\ 

0 
~/ 

/ '-' 
",\,/ 

0 P == 769 lb J v:> V 
1 c r exp / 2 

/ 
l(" V 

L 
) V~ 

400 600 800 1000 
P , lb 

Figure 4 . - Determination of buckling load of GALCIT cylinder 25 for two four , , 

<t: 

gJ 
Cil 
:> 

~ 
Q 

·s 
H 
Q) ...., 
Q) 

Q 

8 

6 

4 

2 

0 

-2 

-4 
1300 

/ 
t- Pcr exp 

1400 

s ix, and eight bays. 

( 

~ A 

\ 
\ 

[',. 

== 1371 lb ~ 

--' 

1500 

~ +-

1600 
P, Ib 

./ 

J 
~'a~ 

~ 
~ I 

1700 1800 

.04 

o 

-.04 

-.08 

Figure 5. - Dete r mination of buckling load of GALCIT cylinde r 65 by table II. 
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~ 
1000 2000 3000 4000 5000 

-.4 
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Figure 6. - Determination of buckling load of PIBAL cylinder 10 by table II. 
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Figure 7. - Experimental variation of kL with parameters A and r . 
rid = 6. 32. Value of r given fo r plotted points , 
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~ 
Figure 9. - Side view of PIBAL cylinder 82 after buckling. 
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