1,692 research outputs found
Updating soil information with digital soil mapping
De Bodemkaart van Nederland, schaal 1:50.000, is de belangrijkste bron van bodeminformatie in Nederland. Deze kaart raakt echter in gebieden met veengronden verouderd. Door intensief gebruik van deze gronden verdwijnt het veen. Actualisatie van de bodemkaart is daarom noodzakelijk. Bas Kempen promoveerde op zijn onderzoek hiernaar
The time course of conceptualizing and formulating processes during the production of simple sentences
The psychological process of producing sentences includes conceptualization (selecting to-beexpressed conceptual content) and formulation (translating conceptual content into syntactic structures of a language). There is ample evidence, both intuitive and experimental, that the conceptualizing and formulating processes often proceed concurrently, not strictly serially. James Lindsley (Cognitive Psych.,1975, 7, 1-19; J.Psycholinguistic Res., 1976, 5, 331-354) has developed a concurrent model which proved succesful in an experimental situation where simple English Subject-Verb (SV) sentences such as âThe boy is greetingâ,âThe girl is kickingâ were produced as descriptions of pictures which showed actor and action. The measurements were reaction times defined as the interval between the moment a picture appeared on a screen and the onset of the vocal utterance by the speaker. Lindsley could show, among other things, that the formulation process for an SV sentence doesnât start immediately after the actor of a picture (that is, the conceptual content underlying the surface Subject phrase) has been identified, but is somewhat delayed. The delay was needed, according to Lindsley, in order to prevent dysfluencies (hesitations) between surface Subject and verb. We replicated Lindsleyâs data for Dutch. However, his model proved inadequate when we added Dutch Verb-Subject (VS) constructions which are obligatory in certain syntactic contexts but synonymous with their SV counterparts. A sentence production theory which is being developed by the first author is able to provide an accurate account of the data. The abovementioned delay is attributed to certain precautions the sentence generator has to take in case of SV but not of VS sentences. These precautions are related to the goal of attaining syntactic coherence of the utterance as a whole, not to the prevention of dysfluencies
Feshbach resonances with large background scattering length: interplay with open-channel resonances
Feshbach resonances are commonly described by a single-resonance Feshbach
model, and open-channel resonances are not taken into account explicitly.
However, an open-channel resonance near threshold limits the range of validity
of this model. Such a situation exists when the background scattering length is
much larger than the range of the interatomic potential. The open-channel
resonance introduces strong threshold effects not included in the
single-resonance description. We derive an easy-to-use analytical model that
takes into account both the Feshbach resonance and the open-channel resonance.
We apply our model to Rb, which has a large background scattering
length, and show that the agreement with coupled-channels calculations is
excellent. The model can be readily applied to other atomic systems with a
large background scattering length, such as Li and Cs. Our approach
provides full insight into the underlying physics of the interplay between
open-channel (or potential) resonances and Feshbach resonances.Comment: 16 pages, 12 figures, accepted for publication in Phys. Rev. A; v2:
added reference
Predicting scattering properties of ultracold atoms: adiabatic accumulated phase method and mass scaling
Ultracold atoms are increasingly used for high precision experiments that can
be utilized to extract accurate scattering properties. This calls for a
stronger need to improve on the accuracy of interatomic potentials, and in
particular the usually rather inaccurate inner-range potentials. A boundary
condition for this inner range can be conveniently given via the accumulated
phase method. However, in this approach one should satisfy two conditions,
which are in principle conflicting, and the validity of these approximations
comes under stress when higher precision is required. We show that a better
compromise between the two is possible by allowing for an adiabatic change of
the hyperfine mixing of singlet and triplet states for interatomic distances
smaller than the separation radius. A mass scaling approach to relate
accumulated phase parameters in a combined analysis of isotopically related
atom pairs is described in detail and its accuracy is estimated, taking into
account both Born-Oppenheimer and WKB breakdown. We demonstrate how numbers of
singlet and triplet bound states follow from the mass scaling.Comment: 14 pages, 9 figure
SoilGrids: using big data solutions and machine learning algorithms for global soil mapping
The SoilGrids system (www.soilgrids.org) uses machine learning algorithms to predict soil type and basic soil properties at seven depths on global extent. These algorithms (i.e., random forests, gradient boosting) are trained with soil observations assembled from 150 000 locations across the globe as stored in WoSIS ..
Updating the Dutch soil map using soil legacy data: a multinomial logistic regression approach
Advancing interoperable soil data exchange for global soil data information systems
In order to be able to address local, regional and global issues such as sustainable land management, food security, climate change mitigation and soil-related indicators of the UN Agenda for Sustainable Development the need for reliable, relevant and accurate soil information and data is increasing. Currently, ..
The hot core towards the intermediate mass protostar NGC7129 FIRS 2: Chemical similarities with Orion KL
NGC 7129 FIRS 2 (hereafter FIRS 2) is an intermediate-mass (2 to 8 Msun)
protostar located at a distance of 1250 pc. High spatial resolution
observations are required to resolve the hot core at its center. We present a
molecular survey from 218200 MHz to 221800 MHz carried out with the IRAM
Plateau de Bure Interferometer. These observations were complemented with a
long integration single-dish spectrum taken with the IRAM 30m telescope. We
used a Local Thermodynamic Equilibrium (LTE) single temperature code to model
the whole dataset. The interferometric spectrum is crowded with a total of ~300
lines from which a few dozens remain unidentified yet. The spectrum has been
modeled with a total of 20 species and their isomers, isotopologues and
deuterated compounds. Complex molecules like methyl formate (CH3OCHO), ethanol
(CH3CH2OH), glycolaldehyde (CH2OHCHO), acetone (CH3COCH3), dimethyl ether
(CH3OCH3), ethyl cyanide (CH3CH2CN) and the aGg' conformer of ethylene glycol
(aGg'-(CH2OH)_2) are among the detected species. The detection of vibrationally
excited lines of CH3CN, CH3OCHO, CH3OH, OCS, HC3N and CH3CHO proves the
existence of gas and dust at high temperatures. In fact, the gas kinetic
temperature estimated from the vibrational lines of CH3CN, ~405 K, is similar
to that measured in massive hot cores. Our data allow an extensive comparison
of the chemistry in FIRS~2 and the Orion hot core. We find a quite similar
chemistry in FIRS 2 and Orion. Most of the studied fractional molecular
abundances agree within a factor of 5. Larger differences are only found for
the deuterated compounds D2CO and CH2DOH and a few molecules (CH3CH2CN, SO2,
HNCO and CH3CHO). Since the physical conditions are similar in both hot cores,
only different initial conditions (warmer pre-collapse phase in the case of
Orion) and/or different crossing time of the gas in the hot core can explain
this behavior.Comment: 30 pages, 9 figure
Radio-Frequency Spectroscopy of Ultracold Fermions
Radio-frequency techniques were used to study ultracold fermions. We observed
the absence of mean-field "clock" shifts, the dominant source of systematic
error in current atomic clocks based on bosonic atoms. This is a direct
consequence of fermionic antisymmetry. Resonance shifts proportional to
interaction strengths were observed in a three-level system. However, in the
strongly interacting regime, these shifts became very small, reflecting the
quantum unitarity limit and many-body effects. This insight into an interacting
Fermi gas is relevant for the quest to observe superfluidity in this system.Comment: 6 pages, 6 figure
- âŠ