7,338 research outputs found

    Investigation to identify paint coatings resistive to microorganism growth

    Get PDF
    All selected coatings contain nutrients that support microbial growth and survival. Incorporation of microbiocidal agents into coatings more susceptible to attack is recommended for improved inhibition of microorganism growth and for increased protection against deterioration of coatings by microorganisms

    Investigation of Spacecraft Materials that Support Microorganism Growth

    Get PDF
    Microorganism growth supporting or biocidal properties of spacecraft paint coating

    Investigation of spacecraft materials that support microorganism growth Summary report, 1 Sep. 1968 - 30 Jun. 1970

    Get PDF
    Investigating spacecraft coatings for resistance to growth of microorganism

    Wavelength dependent light tunable resistive switching graphene oxide nonvolatile memory devices

    Get PDF
    This paper reports on the first optically tunable graphene oxide memristor device. Modulation of resistive switching memory by light opens the route to new optoelectronic devices that can be switched optically and read electronically. Applications include integrated circuits with memory elements switchable by light and optically reconfigurable and tunable synaptic circuits for neuromorphic computing and brain-inspired, artificial intelligence systems. In this report, planar and vertical structured optical resistive switching memristors based on graphene oxide are reported. The device is switchable by either optical or electronic means, or by a combination of both. In addition the devices exhibit a unique wavelength dependence that produces reversible and irreversible properties depending on whether the irradiation is long or short wavelength light, respectively. For long wavelength light, the reversible photoconductance effect permits short-term dynamic modulation of the resistive switching properties of the light, which has application as short-term memory in neuromorphic computing. In contrast, short wavelength light induces both the reversible photoconductance effect and an irreversible change in the memristance due to reduction of the graphene oxide. This has important application in the fabrication of cloned neural networks with factory defined weights, enabling the fast replication of artificial intelligent chips with pre-trained information

    Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration

    Get PDF
    Nanoimprint lithography (NIL) is a fast, simple and high throughput technique that allows fabrication of structures with nanometre precision features at low cost. We present an advanced bilayer nanoimprint lithography approach to fabricate four terminal nanojunction devices for use in single molecule electronic studies. In the first part of this work, we demonstrate a NIL lift-off process using a bilayer resist technique that negates problems associated with metal side-wall tearing during lift-off. In addition to precise nanoscale feature replication, we show that it is possible to imprint micron-sized features while still maintaining a bilayer structure enabling an undercut resist structure to be formed. This is accomplished by choosing suitable imprint parameters as well as residual layer etching depth and development time. We then use a feedback controlled electromigration procedure, to produce room-temperature stable nanogap electrodes with sizes below 2 nm. This approach facilitates the integration of molecules in stable, solid-state molecular electronic devices as demonstrated by incorporating benzenethiol as molecular bridges between the electrodes and characterizing its electronics properties through current-voltage measurements. The observation of molecular transport signatures, showing current suppression in the I-V behaviour at low voltage, which is then lifted at high voltage, signifying on- and off-resonant transport through molecular levels as a function of voltage, is confirmed in repeated I-V sweeps. The large conductance, symmetry of the I-V sweep and small value of the voltage minimum in transition voltage spectroscopy indicates the bridging of the two benzenethiol molecules is by π-stacking

    The magnetoelectrochemical switch

    Get PDF
    In the field of spintronics, the archetype solid-state two-terminal device is the spin valve, where the resistance is controlled by the magnetization configuration. We show here how this concept of spin-dependent switch can be extended to magnetic electrodes in solution, by magnetic control of their chemical environment. Appropriate nanoscale design allows a huge enhancement of the magnetic force field experienced by paramagnetic molecular species in solutions, which changes between repulsive and attractive on changing the electrodes' magnetic orientations. Specifically, the field gradient force created within a sub-100-nm-sized nanogap separating two magnetic electrodes can be reversed by changing the orientation of the electrodes' magnetization relative to the current flowing between the electrodes. This can result in a breaking or making of an electric nanocontact, with a change of resistance by a factor of up to 103. The results reveal how an external field can impact chemical equilibrium in the vicinity of nanoscale magnetic circuits

    Novel conducting polymer current limiting devices for low cost surge protection applications

    Get PDF
    We report on the development of novel intrinsic conducting polymer two terminal surge protection devices. These resettable current limiting devices consist of polyaniline nanofibres doped with methane sulphonic acid electrochemically deposited between two 55 μm spaced gold electrodes. At normal applied voltages, the low resistance devices act as passive circuit elements, not affecting the current flow. However during a current surge the devices switch from ohmic to non-ohmic behaviour, limiting current through the device. After the current surge has passed, the devices reset back to their original state. Our studies show that a partial de-doping/re-doping process caused by the rapid diffusion of moisture out of or into the polymer film during joule heating/cooling is the underlying mechanism responsible

    Nanotrench for nano and microparticle electrical interconnects

    Get PDF
    We present a simple and versatile patterning procedure for the reliable and reproducible fabrication of high aspect ratio (10 4 ) electrical interconnects that have separation distances down to 20 nm and lengths of several hundreds of microns. The process uses standard optical lithography techniques and allows parallel processing of many junctions, making it easily scalable and industrially relevant. We demonstrate the suitability of these nanotrenches as electrical interconnects for addressing micro and nanoparticles by realizing several circuits with integrated species. Furthermore, low impedance metal-metal low contacts are shown to be obtained when trapping a single metal-coated microsphere in the gap, emphasizing the intrinsic good electrical conductivity of the interconnects, even though a wet process is used. Highly resistive magnetite-based nanoparticles networks also demonstrate the advantage of the high aspect ratio of the nanotrenches for providing access to electrical properties of highly resistive materials, with leakage current levels below 1 pA. © 2010 IOP Publishing Ltd

    Method to reduce the formation of crystallites in ZnO nanorod thin-films grown via ultra-fast microwave heating

    Get PDF
    © 2018 This paper discusses the nucleation and growth mechanisms of ZnO nanorod thin-films and larger sized crystallites that form within the solution and on surfaces during an ultra-fast microwave heating growth process. In particular, the work focusses on the elimination of crystallites as this is necessary to improve thin-film uniformity and to prevent electrical short circuits between electrodes in device applications. High microwave power during the early stages of ZnO deposition was found to be a key factor in the formation of unwanted crystallites on substrate surfaces. Once formed, the crystallites, grow at a much faster rate than the nanorods and quickly dominate the thin-film structure. A new two-step microwave heating method was developed that eliminates the onset of crystallite formation, allowing the deposition of large-area nanorod thin-films that are free from crystallites. A dissolution-recrystallization mechanism is proposed to explain why this procedure is successful and we demonstrate the importance of the work in the fabrication of low-cost memristor devices
    corecore