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Abstract 

Nanoimprint lithography (NIL) is a fast, simple and high throughput technique that allows fabrication 

of structures with nanometre precision features at low cost. We present an advanced bilayer 

nanoimprint lithography approach to fabricate four terminal nanojunction devices for use in single 

molecule electronic studies. In the first part of this work, we demonstrate a NIL lift-off process using 

a bilayer resist technique that negates problems associated with metal side-wall tearing during lift-

off. In addition to precise nanoscale feature replication, we show that it is possible to imprint micron- 

sized features while still maintaining a bilayer structure enabling an undercut resist structure to be 

formed. This is accomplished by choosing suitable imprint parameters as well as residual layer etching 

depth and development time. We then use a feedback controlled electromigration procedure, to 

produce room-temperature stable nanogap electrodes with sizes below 2 nm. This approach 

facilitates the integration of molecules in stable, solid-state molecular electronic devices as 

demonstrated by incorporating benzenethiol as molecular bridges between the electrodes and 

characterizing its electronics properties through current-voltage measurements. The observation of 

molecular transport signatures, showing  current suppression in the I-V behaviour at low voltage, 

which is then lifted at high voltage, signifying on- and off-resonant transport through molecular levels 

as a function of voltage,  is confirmed in repeated I-V sweeps. The large conductance, symmetry of 

the I-V sweep and small value of the voltage minimum in Transition Voltage Spectroscopy indicates 

the bridging of the two benzenethiol molecules is by –stacking.  

 

1. Introduction 

Since the initial ideas of using molecules to process signals, heralded by the molecular rectifier work 

of Aviram and Ratner[1] in 1974, scientists have steadily improved the understanding of these complex 

electrode-molecule systems and have developed better and more robust ways to integrate molecules 

into devices. In the last decade, molecular electronics has undergone a renaissance as a suite of new 

achievements has arisen. A single-molecule light emitting diode has been developed[2], single 

molecule rectification has reached levels of more than 200[3] and electrical control of the nuclear spin 

of a single molecule in a device has been achieved via the hyperfine Stark effect[4]. These 
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achievements occurring because molecular electronics provides not only device miniaturization, but 

a route to the introduction of functional molecules with electronic, optical and mechanical properties 

tailored through chemical synthesis [5–9]. The future of molecular electronics is also bright. In recent 

years, traditional semiconductor devices have reached their scaling limit[10], and there is an increased 

need to find alternate ways to not only make electronic devices[11] but also explore new types of 

architectures[12,13] that non-traditional materials and methods of fabrication offer. However, many 

challenges in the field remain, especially at the single molecule electronic level, such as device 

variability, stability, improved size alignment between the “leads” and the “molecule” and upscaling 

from single to multiple device architectures to make computer-like systems.  

Nanoimprint lithography (NIL) is a versatile nanofabrication technique that allows the replication of 

patterns with high throughput and resolution. In recent years it has experienced rapid development 

and uptake as a fabrication technique in both industrial and research environments [14–17]. One 

particular applicable field for NIL is molecular electronics. This field requires devices with high-

resolution sub-micron features and fabrication in large numbers in order to build-up statistically 

significant results. 

In thermal NIL, a substrate is coated with resist which is heated above the glass transition temperature 

(Tg) and then a stamp with the desired features is pressed into the coated substrate causing the resist 

to flow across the surface. After cooling, the substrate is mechanically separated leaving an impression 

of the stamp [18]. It currently has a demonstrated resolution of less than 10 nm [19].  

NIL is commonly used as an etch mask for pattern transfer but it does not lend itself well to lift-off as 

the imprinting process always leaves the patterned resist with sidewall angles greater than 90° as this 

is necessary to remove the stamp after imprinting. During metal deposition, material will adhere to 

the sidewalls and form a continuous film over features on the resist, making clean lift-off nearly 

impossible [20]. 

An alternative approach often used in lithography processes is the use of a lift-off resist (LOR) layer. 

This is a bottom resist layer that allows an undercut to be formed once the lithographic process has 

patterned the topmost layer. This process reduces the occurrence of an incomplete lift-off and tearing 

of the patterned metal films by making it very unlikely for a continuous metal film to exist between 

material patterned on the substrate and material deposited on the resist layer. We chose to apply this 

technique in NIL. Previously, it has been demonstrated that a bilayer resist coating can be imprinted 

without disturbing the bilayer structure for pillars [21]. However, this was demonstrated only for small 

pillars and lines with sizes between 20 nm and 600 nm. Another technique exploiting the differing 

plasma etch resistance of polystyrene-polydimethylsiloxane (PS-PDMS) and polymethyl methacrylate 

(PMMA) has been shown to produce undercut resist structures with NIL [22]. However, the line quality 

of features produced using this technique may suffer due to the irregular nature of the top PS-PDMS 

layer after extended plasma exposure.  

In addition to having high-quality lift-off, there is a need as well to be able to imprint nanometre as 

well as micrometre scale features with NIL. This is especially relevant in the case of electronic devices 

where nanosized features must be present alongside larger sized pads that are needed to make 

electrical connections with wire-bonding or a probe-station. Using standard NIL methods, this can be 

very difficult since large amounts of lateral resist flow occurs from imprinting the larger features, 

which can degrade or even make impossible the imprinting of the smaller nanoscale features. Using 

the above bi-layer approach, we explore this problem and show how to resolve this issue by choosing 

suitable imprint parameters and residual layer etching.  
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Lastly, we demonstrate the success of the above technique in the fabrication of devices for molecular 

electronics. Molecular electronics needs reliable methods to fabricate gaps between electrodes, of 

order 2 nm, and methods to integrate, in a reliable manner, single molecules that bridge between 

source and drain contacts. Electromigration is one such method to make very small gaps between 

electrodes [9,23–25]. Using our double layer NIL method we demonstrate the suitable fabrication of 

devices for electromigration and form molecular devices by incorporating benzenethiol as molecular 

bridges between the electrodes. 

 

2. Method 

The Master stamp used in this work was fabricated by standard electron beam lithography (EBL) and 

reactive ion etching (RIE) on a 100 mm diameter Si wafer and was cleaned prior to use with sonication 

in acetone, 2-propanol and water before being dried in nitrogen and baked prior to spin coating of the 

e-beam resist (AR-N 7520, Allresist). After the patterning process the stamp was coated with an anti-

stick coating, perfluorodecyltrichlorosilane (FDTS), that aids stamp separation after imprinting. The Si 

wafer, shown in Figure 1 (a), was patterned in a square-like grid with 10 x 12 mm separating each 

patterned area. Each patterned area contains a group of 15 imprintable devices arranged in a 

horizontal line, as shown in Figure 1 (b). The design of a single device consists of a cross with 4 arms 

that are used for 4-terminal electrical connections. In the centre of the cross the four arms meet and 

form a single, nanoscale, vertical line with dimensions of 100 x 200 nm, as shown in Figure 1 (c), and 

having two arms connected to either side. The nanoscale line is the main part of the device and is used 

to make the conducting channel for the electromigration process. The electromigration process occurs 

after the NIL process and is used to make the nanoscale junction, which consists of a very small air-

gap (<2 nm) between two metal electrodes. 

 

Figure 1. a) Stamp design consisting of 56 groups of 15 nanojunction (crosses) on a 100 mm diameter Si wafer 

fabricated using EBL and RIE. b) SEM image of one group of 15 nanojunctions showing marks for 
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photolithography alignment. c) AFM height map of the stamp and showing the channel region (yellow) that is at 

the centre of a single cross and used to make a nanojunction by electromigration. 

 

The NIL method used for copying the master pattern is shown in Figure 2 and consists of the following 

steps. Firstly, the bilayer resist was deposited onto a cleaned Si wafer with 1 μm of thermally grown 

oxide. The bilayer consisted of polymethylglutarimide (PMGI) SF5 resist (MicroChem Corp), spin-

coated to give a thickness of 150 nm and baked at 190°C. This was followed by a layer of 15k PMMA 

that was dissolved in chlorobenzene (8% wt.), spin coated to a thickness of 200 nm and baked at 160°C. 

Imprinting was carried out by applying 2 bar pressure (used also for all test studies described in this 

work) once the set-point temperature was reached. Once the desired imprinting time was reached, 

the stamp was cooled whilst still maintaining pressure until the temperature had reached 90°C. The 

stamp is separated by inserting a scalpel blade between the stamp and wafer and the residual PMMA 

is removed using low power oxygen plasma.  

Spin coated films and residual layer thicknesses were characterised by AFM (Bruker Dimension Edge) 

and/or surface profilometry (Bruker DektakXT). A CNI v2.1 machine (NILT) was used to perform the 

imprinting and the process of coating the stamps and NIL was carried out in a class 1000 cleanroom. 

Metal deposition was carried out using e-beam evaporation in a system with base pressure of 1x10-7 

mbar (HHV Auto500). The deposition rate was maintained at 0.1 Å/s and the substrate temperature 

did not rise above 40°C to not influence the imprinted resist structure.  

 

Figure 2.  The Bilayer NIL process consists of spin-coating a substrate with a bilayer of PMGI/PMMA, imprinting 

and removal of the stamp. This is followed by plasma etching to remove residual PMMA resist, which then 

permits an undercut to be formed by selective removal of PMGI, allowing metallisation and a clean lift-off. 

 

 

3. Results and Discussion 

The results and discussion section is divided into three sections, covering i. Optimization of the bilayer 

nanoimprint lithography process for devices containing both nano and micron feature sizes,  ii. The 

electromigration process and  iii. Single molecule electronic devices.   
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i. Bilayer Nanoimprint Lithography for Devices containing Both Nano and Micron Feature Sizes  

In order to determine the correct imprint parameters several trial imprints were made across a range 

of temperatures (140°C to 190°C) whilst keeping the resist material, film thickness and imprint 

pressure constant. As expected, higher temperatures resulted in faster imprints, as shown in Figure 3 

(b). For process temperatures greater than 150°C, very little change in imprinted depth was observed 

after 120 seconds, which signifies that the imprinting is complete in this time. 

At the highest temperature, a reduction in the quality of the imprinted features was observed. Voids 

also appeared in the films when heated above 190°C. It is possible that intermixing of the polymer 

bilayer may occur above this temperature resulting in localised disturbances of the film surface giving 

the appearance of voids. At 140°C and 150°C, very slow imprinting occurred and the displaced resist 

was observed to flow upwards rather than laterally, producing raised regions. This can be seen in 

Figure 3 (a) as rings of defect free resist surrounding the imprinted regions[26]. (Note: when this 

occurred, the imprinted depth was measured from the undisturbed resist level away from the 

imprint.)  

For imprints carried out at temperatures between 140°C and 170°C, a reoccurrence of void defects in 

the resist film was also observed. Unlike those observed at temperatures above 190°C, these defects 

likely occur as a result of the stamp bending around the stamp protrusions which are in the process of 

imprinting. The resulting small separation between the low viscosity resist surface and stamp as a 

result of this bending has been shown to result in a polymer thinning effect as a result of electrostatic 

interactions between the stamp and resist surface [27]. At 180°C, only a very small number of these 

void defects occurred, usually located in proximity to dust particles present on the resist but not 

around the desired features. This is most likely because of reduced stamp bending as the polymer has 

a reduced viscosity at this higher temperature. Reducing foreign particles should totally eliminate the 

occurrence of this type of defect at this temperature and imprinting pressure. 

 

Figure 3. a) Imprinting of the nanojunction (Master) stamp into bilayer resist at increasing temperatures leads 

to the appearance of flow defects. Areas immediately surrounding the imprinted features appear well imprinted 

due to a squeeze flow of resist at 150°C while at 190°C voids appear. 180°C gives optimum imprinting behaviour. 

b) Imprinting depth measured at increasing temperature into 150 nm thick, 15k PMMA resist with constant 

applied pressure. The CNI imprinter was rapidly cooled to a temperature below 110°C in order to halt the 

imprinting process, however it is likely that some small amount of imprinting depth will occur during cooling. 
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The bilayer NIL process produces an unwanted residual layer of PMMA (20 nm) after stamping that 

must be removed before the development and metallization processes. An isotropic oxygen plasma 

etch (Diener Zepto, 14 minutes) was used to remove this layer. As well as removing the residual 

polymer, the process can also broaden the imprinted features and for this reason, the duration of 

etching should be limited to preserve the size of the original design. The correct plasma etch duration 

was determined by an iterative process. For under-etching, either no development of the PMGI 

occurred as the residual PMMA layer completely blocks access of the developer solution, or islands of 

PMMA were observed, which can only be removed after excessive development time which then risks 

collapse of the bilayer structure.  

The correct development time is also crucial to the process. If the development time is too short, 

remnant PMGI is present as shown by the yellow shadowing of the edges in Figure 4 (a), resulting in 

poor metallization and lift-off. If the development time is too long, the quality of the replication is 

poor as there is a partial collapse of the edges, as shown in Figure 4 (c). A development time of 20 s 

was found to be ideal for the thickness of the PMGI layer used, resulting in clean and crisp features, 

as shown in Figure 4 (b).  

 

Figure 4. Increasing the length of development from a) 10s, b) 20s and c) 30s of the features in PMMA/PMGI 

bilayer resist after removal of the residual layer of resist through plasma etching. Imprint time d) SEM image of 

the nanojunction region after 20s development. 

After patterning of the resist by the NIL process, 20nm of gold was deposited onto the wafer, followed 

by lift-off using acetone and then n-methyl-2-pyrrolidone.  Substrates were also gently cleaned using 

a low power (25W) oxygen plasma exposure for 10 minutes. In the case of the devices used for 

molecular electronics studies, a two-step lithography approach was used. The second lithography step 

involved a standard UV lithography process and was used to pattern large area and thick Al contact 
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pads onto the ends of the four arms of the crosses in order to facilitate electrical connections. The 

completed devices, in this case, are shown in Figure 5.  

Using this approach, and with periodic cleaning of the Master stamp using sonication in acetone and 

2-propanol, we have been able to carry out the NIL process over 50 times with no degradation in the 

imprinted features making this process very attractive for producing large numbers of devices. We see 

no reason why this process cannot be continued many hundreds of times.  

 

Figure 5. SEM images of a completed device consisting of 15 Au nanojunctions connected to thick Al contact 

pads. 

 

ii. Electromigration 

In this work, electromigration was used to make very small, nanosized gaps (< 2 nm) for molecular 

electronics studies. Electromigration is a process in which a large current density is driven into a 

narrow and confined conducting channel [28,29]. The related electron wind of the current displaces 

atoms and defects, causing them to migrate. Once the current density flowing through the constriction 

surpasses the electromigration threshold (typically > 108 Am-2  for gold[30]) the resistance of the 

nanojunction increases as its cross-sectional area narrows due to material transport. This results in a 

thinning (or pinching) of the conduction channel in the lateral direction, and usually occurring at the 

midpoint of the channel where there is maximum heating or at desired position along the length of 

the channel, that can be determined by placing a notch. With continued application of a current 

density, usually imparted via voltage pulses, the pinching effect occurs until at some point, a single 

atom is present in the gap, as typically confirmed by the observation of quantized steps in the 

conductance[31]. With time, and or more application of pulses, a nanojunction typically forms, which 

generally consists of the formation of a sub-2 nm gap between the two electrodes [23]. 

Thermal runaway is a problem inherent with electromigrated break junctions [24,32]. This occurs 

because the nanojunction resistance increases as electromigration begins and the power being 

dissipated by the junction, in the form of heat, also increases. The rate of electromigration is increased 

with elevated temperature and a thermal runaway will most likely occur in the absence of any form 

of limiting mechanism [33,34]. Nanojunctions broken as a result of thermal runaway tend to have 

large gaps [35]. Previously reported nanoimprinted devices have been shown to produce large and 

uncontrollable gap sizes and in addition require heating of the device in order to increase the 

nanojunction resistance and increase material diffusion [36]. When used for molecular electronics 

studies this requirement poses the potential risk of thermal decomposition of any molecules present 
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prior to breaking as well as also excluding the possibility of carrying out electromigration in 

experiments that study low temperature molecular phenomenon. In our system, this process is 

avoided by using a feedback voltage source (FVS). This circuit maintains a constant voltage across the 

nanojunction with the result that the power dissipated by the junction is reduced as electromigration 

progresses. Using a four terminal device allows us to compensate from resistance that arises as a result 

of the thin film interconnects on the device as well as contact resistance from the probes used to 

connect the device to equipment. 

 

Figure 6. Schematic of the experimental setup including feedback voltage source used to carry out 

electromigration of the nanojunctions. The gold cross represents the nanojunction device 

 

Figure 6 shows the schematic of the FVS. The voltage drop across the junction is measured by an 

additional pair of leads that connect to an instrumentation amplifier, the output of which is fed into 

the non-inverting input of the feedback op-amp. The circuit is stabilised by tuning the capacitance and 

resistance in the feedback stage such that an adequately fast response is obtained whilst preventing 

overshoot and oscillation when applying step changes in voltage, similar to the pulses used to carry 

out electromigration. It was found that adding capacitance across the feedback path of the 

instrumentation amplifier was also needed in order to provide a stable feedback mechanism without 

excessive overshoots and oscillation. In our setup, the resistance of the junction is monitored by a 

lock-in technique by measuring the voltage drop across a 10 Ω resistor between the junction and 

ground. The lock-in excitation (4 mV, 1 kHz) and is added to the voltage pulses which drive the 

electromigration process (17% duty cycle, 17 Hz). The setup is computer controlled to increase the 

voltage applied to the device incrementally per pulse (approximately 150 μVs-1) while continually 

monitoring the nanojunction resistance. As electromigration progresses we see transitions from 

normal diffusive conduction, to a quasi-ballistic regime as the nanojunction size reduces below the 

electron scattering length to a size of just a few atoms. At this point only a few transport channels 

contribute to the overall conduction of the device and in some runs we observe quantised 

conductance values just before the wire breaks to form nano-sized gap. A sudden jump in resistance 

indicates that a tunnelling gap has developed, after which the electromigration procedure is 

automatically halted by the program. 

Figure 7 (a) shows the evolution of the electromigration process in the formation of a typical 

nanojunction. The resistance vs pulse voltage shows the transition from the conductive diffusive 
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regime (high conductance) to the quasi-ballistic regime, with steps in the conductance in the vicinity 

of G0 denoting a limited number of quantized conduction channels. Figure 7 (b) shows a typical AFM 

image of one junction after undergoing electromigration to form a nanogap. It is clear that a change 

in the junction dimensions has occurred. However, the actual gap size is well below the resolution of 

the instrument. We therefore rely on electrical measurements to determine the typical gap size. 

Figure 7 (c) shows a typical nonlinear current-voltage (I-V) characteristics fitted to the Simmons 

tunnelling model (equation 1) derived from dI/dV measurements. Although we are not able to 

measure directly the barrier height or the junction area, these two parameters are quite robust and 

the fit is determined mainly by the gap size. Fitting over 10 such devices with ϕ = 1 eV, we find that 

the gap size is less than 2 nm confirming that electromigration can be carried out smoothly in devices 

fabricated using this bilayer technique. 

 

Figure 7. a) Evolution of the device resistance during the electromigration procedure. Resistance is measured 

between voltage pulses. Inset shows the conductance plotted in terms of the quantized conductance, G0, in the 

region from 20G0 to before the transition into a tunnelling regime (< 1G0). b) AFM image of a nanojunction after 

electromigration has formed a nanogap. c) Representative I-V curve measured at room temperature after a 

nanogap has formed in two devices and showing a fit to the Simmons tunnelling model. 
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The Simmons tunnelling model: 

 

𝐼(𝑉) =
𝐴𝑒

2𝜋ℎ(𝛽∆𝑠)2 {𝜑 exp (
4𝜋𝛽∆𝑠

ℎ
√2𝑚√𝜑) − (𝜑 + 𝑒𝑉) exp (

4𝜋𝛽∆𝑠

ℎ
√2𝑚√𝜑 + 𝑒𝑉)} [1] 

where 𝐼 is the current, 𝐴 is the junction area, 𝛥𝑠 is the gap size, 𝜑 is the barrier height and 𝑉 is the 

applied voltage [37]. 𝛽 is a constant which can be approximated to unity in the voltage regime over 

which we make measurements. 

 

 

iii. Single Molecule Electronic Device 

As a proof of concept of our fabrication process, single molecule electronic devices were made 

containing diphenyl disulphide (DPDS). This compound consists of two phenyl rings connected via two 

thiol groups. It has been well documented that upon exposure to a gold surface the S-S bond of the 

DPDS molecule oxidizes to form benzenethiol (BT), which self-assemble onto the electrode surfaces 

[38–40]. The resulting BT monolayers present an ideal testbed for measuring signatures of molecular 

electronic transport due to the high conductivity of the delocalised -orbitals on the phenyl rings.  In 

addition, the versatility of this molecule allows for the construction of many types of molecular 

junction with differing functionalities though step-wise chemical synthesis with BT forming the initial 

anchoring unit of a molecular wire [41]. 

In a typical molecular transport experiment, the molecules are allowed to self-assemble onto the 

nanojunction and electromigration is used to form a nanogap. The increased temperature during the 

electromigration process is expected to increase the mobility of molecular species present in the 

vicinity of the junction area and increase the chance of a molecule moving into the nanogap once 

formed. An advantage is that the experiment can be performed in situ without the need to remove 

the device from the measurement setup, which would otherwise expose the clean nanogap to 

ambient contamination. We first oxygen plasma clean the unbroken nanojunction (15 minutes, 50 W, 

0.35 mbar) before removing them from the etching chamber and immediately immersing the device 

into a 0.04 mM solution of DPDS in ethanol for 30 minutes. We then carry out the electromigration 

procedure and measure the I-V characteristics of the device. Out of 10 electromigrated nanogaps 

exposed to DPDS, two measured devices displayed behaviour that was indicative of molecular 

transport i.e. current suppression at low voltage, due to off-resonant transport, and a lifting of the 

current suppression at higher voltage. In contrast, devices that contained no DPDS molecules 

exhibited the typical Simmons I-V curve that is shown in Figure 7 (c). Furthermore, at a voltage of 0.5 

V, empty junctions typically had a current of 300 nA compared to 1 μA for a junction containing 

exposed to DPDS, as shown in Figure 8 (a).  
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 Figure 8. a) Repeated I-V measurements made on a DPDS electromigrated nanogap made over a 12 hrs, (lock-

in technique 4 mV at 1447 Hz). Current is extracted from dI/dV measurement. Red curve is a fit to the resonant 

tunnelling model (equation 2) with ΓS,D = 34 meV, ε0 = -0.49 V. The blue curve, showing the lack of a good fit using 

the Simmons model (ϕ = 1 eV, s = 0.85 nm, A = 1.12x10-12 m2) indicates that the junction is not an empty tunnel 

gap.  Inset – a schematic of a possible DT configurations within the nanogap. b) Selected single I-V curve (red) 

and dI/dV (black) from another junction showing similar current suppression c) Schematic of molecular 

conduction through a gold-BT-BT-gold junction at low voltage where the current is suppressed due to off-

resonant transport. d) With application of a sufficiently high voltage, the levels shift bringing a molecular level 

into resonance, lifting the current suppression. e) Expected molecular configuration of the nanojunction 

consisting of overlapping  orbitals from stacked benzene rings that are thiol bonded to opposite electrodes. 

 

Figure 8 (a) shows the I-V behaviour of a device exposed to DPDS, electromigrated and then measured 

continuously over a 12 hr period. The I-V curves show some variation, mostly liked due to minor 

movement of the molecules due to thermal effects, but the current suppression expected at low 
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voltage is clearly visible. We fit the data with again with the Simmons model as well as a single level 

resonant tunnelling model (equation 2): 

𝐼(𝑉) =
4𝐺0

𝑒

𝛤𝑆𝛤𝐷

𝛤𝑆+𝛤𝐷
[arctan [

𝜀0+𝑒𝑉
2⁄

𝛤𝑆+𝛤𝐷
] − arctan [

𝜀0−𝑒𝑉
2⁄

𝛤𝑆+𝛤𝐷
]]         [2] 

where 𝐺0 =
2𝑒2

ℎ
, 𝜀0 represents the level position relative to the fermi level of the electrodes, 𝛤𝑆,𝐷 are 

the coupling parameters of the molecule to the electrodes and are set so that 𝛤𝑆 = 𝛤𝐷  [42].  

 

To the best of our knowledge, these are the first reported results of BT measured in Au breakjunction 

devices. The shape of the I-V curves are very consistent with measurements on similar phenyl 

compounds in mechanically controlled break junctions[43] and first principles calculations[44]. 

However, there are a number of differences due to the different molecules used in this study. In 

contrast to previous work that had molecules with two thiols that could bridge on opposite sides, the 

molecules used in this study can only bind to Au on one side. The large current (10 A at 1.0 V) 

exhibited in conjunction with the on/off resonant transport indicates strong conduction between the 

source and drain electrodes. This current is much larger than that observed for a linear bridged bi-

phenyl dithiol[45], having an experimentally measured conductance value of 1.710-4 G0, which 

further indicates the molecules are in a different geometry. The strong symmetry in the current-

voltage curves also provides further evidence of a transmission function that is independent of the 

direction of current flow, as expected in a symmetric system having similar thiol-gold barriers on the 

drain and source electrodes. We speculate that  the high conduction (≈ 0.13 G0 at 1.0V) is due to 

overlapping  orbitals from the stacked benzene rings that are bound from opposing electrodes, as 

shown in Figure 8 (e). This has similarly been observed in -folded molecular junctions[46]. 

 

Further information can be gained by examining the data using Transition Voltage Spectroscopy (TVS), 

which is now a commonly used tool for probing the frontier molecular orbitals (HOMO or LUMO) in 

molecular devices. First discussed[47] in terms of tunnelling over an energy barrier but now 

understood to be better interpreted in terms of coherent Landauer[48] transport, TVS studies have 

been used both experimentally and theoretically to investigate a variety of partially bridged and fully 

bridged electrode-molecule-electrode systems. Studies are typically based on traditional gold 

electrodes[49] but also novel approaches such as contacts made with graphene and carbon 

nanotubes[50–52].  

In Figure 9 the I-V graphs are analysed by plotting ln(I/V2) vs 1/V, the so-called Fowler-Nordheim (F-N) 

plot that is used to study the tunnelling to field-emission transition in solid-state junctions. A key 

feature of the TVS plot is the transition voltage, Vtrans, which is the position of the first minimum and 

is proportional to the relative difference between the energy of the highest occupied molecular orbital 

(HOMO) and the Fermi energy. Figure 9 shows a TVS plot for the data of several I-V sweeps shown in 

Figure 8 (b).  From the graph there is a clear minimum at a voltage 9.51 V-1, which gives a transition 

voltage of Vtrans = 0.11 V.  

Although no previous data exists for the system investigated in this article, a comparison of 

experimental and theoretical values of Vtrans with molecules of similar type can be made. In the case 

of a single phenyl-SH molecule, bonded only to a single gold electrode, a range of theoretical values 

based on ab initio calculations exist, including 0.32 V [53], 0.9 V [54] and 1.69 V [55]. In terms of 

experimental measurements, a value of 0.95±0.11 V [47] has been found, which would indicate a 
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midpoint value of the theoretical range is appropriate. In bridged systems, whereby the phenyl 

molecules have thiols attached to both drain and source electrodes, experimentally determined TVS 

values of 0.16 V [56] and  0.79±0.2 V [49] have been found for a single phenyl molecule (benzene-1,4-

dithiol) and for two phenyl molecules (biphenyl-4,4’-dithiol) respectively. Thus from these literature 

values, our TVS value of 0.11 V is of closest match to the bridged single phenyl molecule (benzene-

1,4-dithiol), having a TVS minimum at 0.16 V. This comparison suggests the TVS value is largely 

unaffected when either two phenyl molecules are directly bridged via σ bonds or indirectly bridged 

via vertical stacking. We expect this is because of the nature of the sp2 hybridized carbons in the 

benzene molecule, which forms a ring of delocalized π electrons above the plane of the benzene 

molecule. In the case of two or more stacked aromatics, such a π –stacked configuration supports 

through-space transfer which allows the exchange of electrons[57] over sometimes long-range 

distances[58]. The importance of π-π  overlap has long been recognized in thin-film organic electronics 

(small molecule and polymeric systems), tailored graphene devices[59], supramolecular chemistry and 

electron transport in biological systems. It has also been used to guide the formation of molecular 

bridges[60] in single molecule electronics.  

In both cases, we expect the low value of the TVS is due to the close alignment between the HOMO 

level (transport through the HOMO level is known to dominate in this system[61]) of the molecule and 

the electrodes which is hybridized because of the strong coupling between the thiol and electrode. 

This is particularly applicable in the case of small molecules[42]. 

 

Figure 9. a) Transition Voltage Spectroscopy plot showing a voltage minimum at 9.51 V-1 corresponding to a 

transition voltage of Vtrans=0.11 V. The transition voltage relates to the difference between the energy of the 

highest occupied molecular orbital (HOMO) and the Fermi energy of the electrode. 

 

4. Conclusion 

The fabrication of low cost, high-resolution nanoscale devices has been demonstrated using a fast and 

high throughput, bilayer nanoimprint lithography approach. The approach, allowing the replication of 

both nano and micron scale features is applicable to a wide range of device types in nano and 

microelectronics. Optimum parameters were obtained to achieve highly quality imprinting, speed of 

imprinting and highly reliable lift-off process after metallization. The flow behaviour of the bilayer 

resist was discussed in relation to the control of flow defects and preserving the bilayer structure to 
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enable successful tear-free lift-off after metal deposition. The optimum imprinting speed and 

replication of the features was obtained at a temperature of 180°C and pressure of 2 bar. The bilayer 

resist structure is maintained after imprinting allowing the development of an undercut and successful 

lift-off of a thermally deposited 20 nm gold thin film without the need for ultra-sonication. Following 

fabrication of the nanoscale devices by the bilayer nanoimprint approach, feedback controlled 

electromigration was used to make nanogaps with separation between the electrodes of less than 2 

nm, as determined by fitting of the I-V tunnelling curves to the Simmons tunnel model.  

This high throughput method of device fabrication has promising applications in the field of molecular 

electronics as it allows a large number of devices to be fabricated in one-step, at low cost, and with 

high speed. To demonstrate the applicability of this approach, devices were made having electrodes 

functionalized with benzenethiol molecules so that the molecules bridged across the gap to form a 

coupled junction, as confirmed by the observation of molecular transport signatures in repeated I-V 

sweeps. In this case, transport through molecular levels is indicated by a current suppression present 

in the I-V behaviour at low voltage, which is then lifted at high voltage, signifying on- and off-resonant 

transport as a function of voltage. The large conductance, symmetry of the I-V sweep and small value 

of the voltage minimum in Transition Voltage Spectroscopy, Vtrans = 0.11 V, indicates the bridging of 

the two benzenethiol molecules is by –stacking. 

Formation of the electrodes in this way, having bridged benzenethiol molecules, could have important 

application for the development of new types of electronic switches/memory devices. Here the device 

resistance is dependent upon the electronic coupling between the two benzenethiol molecules. This 

coupling would be dependent upon both the conformation and or electronic spin state of a small 

molecule present within the transport pathway, which has the ability to be modulated by an external 

field.  
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