328 research outputs found

    Aluminium-26 production in low- and intermediate-mass binary systems

    Full text link
    Aluminium-26 is a radioactive isotope which can be synthesized within asymptotic giant branch (AGB) stars, primarily through hot bottom burning. Studies exploring 26^{26}Al production within AGB stars typically focus on single-stars; however, observations show that low- and intermediate-mass stars commonly exist in binaries. We use the binary population synthesis code binary_c to explore the impact of binary evolution on 26^{26}Al yields at solar metallicity both within individual AGB stars and a low/intermediate-mass stellar population. We find the key stellar structural condition achieving most 26^{26}Al overproduction is for stars to enter the thermally-pulsing AGB (TP-AGB) phase with small cores relative to their total masses, allowing those stars to spend abnormally long times on the TP-AGB compared to single-stars of identical mass. Our population with a binary fraction of 0.75 has an 26^{26}Al weighted population yield increase of 25%25\% compared to our population of only single-stars. Stellar-models calculated from the Mt Stromlo/Monash Stellar Structure Program, which we use to test our results from binary_c and closely examine the interior structure of the overproducing stars, support our binary_c results only when the stellar envelope gains mass after core-He depletion. Stars which gain mass before core-He depletion still overproduce 26^{26}Al, but to a lesser extent. This introduces some physical uncertainty into our conclusions as 55%55\% of our 26^{26}Al overproducing stars gain envelope mass through stellar wind accretion onto pre-AGB objects. Our work highlights the need to consider binary influence on the production of 26^{26}Al.Comment: 20 pages, 17 figures, and 6 tables. This article has been accepted for publication in MNRAS Published by Oxford University Press on behalf of the Royal Astronomical Societ

    The impact of metallicity on nova populations

    Get PDF
    © 2021 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.The metallicity of a star affects its evolution in a variety of ways, changing stellar radii, luminosities, lifetimes, and remnant properties. In this work, we use the population synthesis code binary_c to study how metallicity affects novae in the context of binary stellar evolution. We compute a 16-point grid of metallicities ranging from Z=104Z=10^{-4} to 0.03, presenting distributions of nova white dwarf masses, accretion rates, delay-times, and initial system properties at the two extremes of our 16-point metallicity grid. We find a clear anti-correlation between metallicity and the number of novae produced, with the number of novae at Z=0.03Z=0.03 roughly half that at Z=104Z=10^{-4}. The white dwarf mass distribution has a strong systematic variation with metallicity, while the shape of the accretion rate distribution is relatively insensitive. We compute a current nova rate of approximately 33 novae per year for the Milky Way, a result consistent with observational estimates relying on extra-Galactic novae but an under-prediction relative to observational estimates relying on Galactic novae. However, the shape of our predicted Galactic white dwarf mass distribution differs significantly to existing observationally derived distributions, likely due to our underlying physical assumptions. In M31, we compute a current nova rate of approximately 36 novae per year, under-predicting the most recent observational estimate of 6516+1565^{+15}_{-16}. Finally, we conclude that when making predictions about currently observable nova rates in spiral galaxies, or stellar environments where star formation has ceased in the distant past, metallicity can likely be considered of secondary importance compared to uncertainties in binary stellar evolution.Peer reviewedFinal Published versio

    Viability of novae as sources of Galactic lithium

    Get PDF
    Of all the light elements, the evolution of lithium (Li) in the Milky Way is perhaps the most difficult to explain. Li is difficult to synthesize and is easily destroyed, making most stellar sites unsuitable for producing Li in sufficient quantities to account for the proto-solar abundance. For decades, novae have been proposed as a potential explanation to this 'Galactic Li problem', and the recent detection of 7Be in the ejecta of multiple nova eruptions has breathed new life into this theory. In this work, we assess the viability of novae as dominant producers of Li in the Milky Way. We present the most comprehensive treatment of novae in a galactic chemical evolution code to date, testing theoretical- and observationally-derived nova Li yields by integrating metallicity-dependent nova ejecta profiles computed using the binary population synthesis code binary c with the galactic chemical evolution code OMEGA+. We find that our galactic chemical evolution models which use observationally-derived Li yields account for the proto-solar Li abundance very well, while models relying on theoretical nova yields cannot reproduce the proto-solar observation. A brief exploration of physical uncertainties including single-stellar yields, the metallicity resolution of our nova treatment, common-envelope physics, and nova accretion efficiencies indicates that this result is robust to physical assumptions. Scatter within the observationally-derived Li yields in novae is identified as the primary source of uncertainty, motivating further observations of 7Be in nova ejecta.Comment: Accepted for publication in ApJL 28/7/202

    Population synthesis of accreting white dwarfs: Rates and evolutionary pathways of H and He novae

    Get PDF
    Novae are some of the most commonly detected optical transients and have the potential to provide valuable information about binary evolution. Binary population synthesis codes have emerged as the most effective tool for modelling populations of binary systems, but such codes have traditionally employed greatly simplified nova physics, precluding detailed study. In this work, we implement a model treating H and He novae as individual events into the binary population synthesis code \binaryc. This treatment of novae represents a significant improvement on the `averaging' treatment currently employed in modern population synthesis codes. We discuss the evolutionary pathways leading to these phenomena and present nova event rates and distributions of several important physical parameters. Most novae are produced on massive white dwarfs, with approximately 70 and 55 per cent of nova events occurring on O/Ne white dwarfs for H and He novae respectively. Only 15 per cent of H-nova systems undergo a common-envelope phase, but these systems are responsible for the majority of H nova events. All He-accreting He-nova systems are considered post-common-envelope systems, and almost all will merge with their donor star in a gravitational-wave driven inspiral. We estimate the current annual rate of novae in M31 (Andromeda) to be approximately 41±441 \pm 4 for H novae, underpredicting the current observational estimate of 6516+1565^{+15}_{-16}, and 0.14±0.0150.14\pm0.015 for He novae. When varying common-envelope parameters, the H nova rate varies between 20 and 80 events per year.Comment: Accepted, MNRAS. 7 Jun 2020: Minor correction regarding AM CVn masses at period bounce, courtesy of P. Neuteufe

    Viability of Novae as Sources of Galactic Lithium

    Get PDF
    Of all the light elements, the evolution of lithium (Li) in the Milky Way is perhaps the most difficult to explain. Li is difficult to synthesize and is easily destroyed, making most stellar sites unsuitable for producing Li in sufficient quantities to account for the protosolar abundance. For decades, novae have been proposed as a potential explanation for this "Galactic Li problem," and the recent detection of Be-7 in the ejecta of multiple nova eruptions has breathed new life into this theory. In this work, we assess the viability of novae as dominant producers of Li in the Milky Way. We present the most comprehensive treatment of novae in a galactic chemical evolution code to date, testing theoretically and observationally derived nova Li yields by integrating metallicity-dependent nova ejecta profiles computed using the binary population synthesis code binary_c with the galactic chemical evolution code OMEGA+. We find that our galactic chemical evolution models which use observationally derived Li yields account for the protosolar Li abundance very well, while models relying on theoretical nova yields cannot reproduce the protosolar observation. A brief exploration of physical uncertainties including single-stellar yields, the metallicity resolution of our nova treatment, common-envelope physics, and nova accretion efficiencies indicates that this result is robust to physical assumptions. Scatter within the observationally derived Li yields in novae is identified as the primary source of uncertainty, motivating further observations of Be-7 in nova ejecta

    Discovery of s-process enhanced stars in the LAMOST survey

    Get PDF
    Here we present the discovery of 895 s-process-rich candidates from 454 180 giant stars observed by the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) using a data-driven approach. This sample constitutes the largest number of s-process enhanced stars ever discovered. Our sample includes 187 s-process-rich candidates that are enhanced in both barium and strontium, 49 stars with significant barium enhancement only and 659 stars that show only a strontium enhancement. Most of the stars in our sample are in the range of effective temperature and log g typical of red giant branch (RGB) populations, which is consistent with our observational selection bias towards finding RGB stars. We estimate that only a small fraction (∼0.5 per cent) of binary configurations are favourable for s-process enriched stars. The majority of our s-process-rich candidates (95 per cent) show strong carbon enhancements, whereas only five candidates (<3  per cent) show evidence of sodium enhancement. Our kinematic analysis reveals that 97 per cent of our sample are disc stars, with the other 3 per cent showing velocities consistent with the Galactic halo. The scaleheight of the disc is estimated to be z_h = 0.634±0.063kpc⁠, comparable with values in the literature. A comparison with yields from asymptotic giant branch (AGB) models suggests that the main neutron source responsible for the Ba and Sr enhancements is the ¹³C(α,n)¹⁶O reaction. We conclude that s-process-rich candidates may have received their overabundances via mass transfer from a previous AGB companion with an initial mass in the range 1−3M_⊙

    On the discovery of K-enhanced and possibly Mg-depleted stars throughout the Milky Way

    Get PDF
    Stars with unusual elemental abundances offer clues about rare astrophysical events or nucleosynthetic pathways. Stars with significantly depleted magnesium and enhanced potassium ([Mg/Fe] 1) have to date only been found in the massive globular cluster NGC 2419 and, to a lesser extent, NGC 2808. The origin of this abundance signature remains unknown, as does the reason for its apparent exclusivity to these two globular clusters. Here we present 112 field stars, identified from 454 180 LAMOST giants, that show significantly enhanced [K/Fe] and possibly depleted [Mg/Fe] abundance ratios. Our sample spans a wide range of metallicities (−1.5 < [Fe/H] < 0.3), yet none show abundance ratios of [K/Fe] or [Mg/Fe] that are as extreme as those observed in NGC 2419. If confirmed, the identified sample of stars represents evidence that the nucleosynthetic process producing the anomalous abundances ratios of [K/Fe] and [Mg/Fe] probably occurs at a wide range of metallicities. This would suggest that pollution scenarios that are limited to early epochs (such as Population III supernovae) are an unlikely explanation, although they cannot be ruled out entirely. This sample is expected to help guide modelling attempts to explain the origin of the Mg–K abundance signature
    corecore