514 research outputs found
Comment on ``the Klein-Gordon Oscillator''
The different ways of description of the particle with oscillator-like
interaction are considered. The results are in conformity with the previous
paper of S. Bruce and P. Minning.Comment: LaTeX file, 5p
Exact Solutions of the Duffin Kemmer Petiau Equation for the Deformed Hulthen Potential
Using the Nikiforov Uvarov method, an application of the relativistic Duffin
Kemmer Petiau equation in the presence of a deformed Hulthen potential is
presented for spin zero particles. We derived the first order coupled
differential radial equations which enable the energy eigenvalues as well as
the full wavefunctions to be evaluated by using of the Nikiforov Uvarov method
that can be written in terms of the hypergeometric polynomials.Comment: 8 pages. submitted to Physica Script
Exact Solution of Photon Equation in Stationary G\"{o}del-type and G\"{o}del Space-Times
In this work the photon equation (massless Duffin-Kemmer-Petiau equation) is
written expilicitly for general type of stationary G\"{o}del space-times and is
solved exactly for G\"{o}del-type and G\"{o}del space-times. Harmonic
oscillator behaviour of the solutions is discussed and energy spectrum of
photon is obtained.Comment: 9 pages,RevTeX, no figure, revised for publicatio
Maxwell - Chern - Simons topologically massive gauge fields in the first-order formalism
We find the canonical and Belinfante energy-momentum tensors and their
nonzero traces. We note that the dilatation symmetry is broken and the
divergence of the dilatation current is proportional to the topological mass of
the gauge field. It was demonstrated that the gauge field possesses the `scale
dimensionality' d=1/2. Maxwell - Chern - Simons topologically massive gauge
field theory in 2+1 dimensions is formulated in the first-order formalism. It
is shown that 6x6-matrices of the relativistic wave equation obey the Duffin -
Kemmer - Petiau algebra. The Hermitianizing matrix of the relativistic wave
equation is given. The projection operators extracting solutions of field
equations for states with definite energy-momentum and spin are obtained. The
5x5-matrix Schrodinger form of the equation is derived after the exclusion of
non-dynamical components, and the quantum-mechanical Hamiltonian is obtained.
Projection operators extracting physical states in the Schrodinger picture are
found.Comment: 18 pages, correction in Ref. [5
Proposal for chiral bosons search at LHC via their unique new signature
The resonance production of new chiral spin-1 bosons and their detection
through the Drell--Yan process at the CERN LHC is considered. Quantitative
evaluations of various differential cross-sections of the chiral bosons
production are made within the CalcHEP package. The new neutral chiral bosons
can be observed as a Breit--Wigner resonance peak in the invariant dilepton
mass distribution, as usual. However, unique new signatures of the chiral
bosons exist. First, there is no Jacobian peak in the lepton transverse
momentum distribution. Second, the lepton angular distribution in the
Collins-Soper frame for the high on-peak invariant masses of the lepton pairs
has a peculiar "swallowtail" shape.Comment: 4 pages, 5 figure
Approximate solution of the Duffin-Kemmer-Petiau equation for a vector Yukawa potential with arbitrary total angular momenta
The usual approximation scheme is used to study the solution of the
Duffin-Kemmer-Petiau (DKP) equation for a vector Yukawa potential in the
framework of the parametric Nikiforov-Uvarov (NU) method. The approximate
energy eigenvalue equation and the corresponding wave function spinor
components are calculated for arbitrary total angular momentum in closed form.
Further, the approximate energy equation and wave function spinor components
are also given for case. A set of parameter values is used to obtain the
numerical values for the energy states with various values of quantum levelsComment: 17 pages; Communications in Theoretical Physics (2012). arXiv admin
note: substantial text overlap with arXiv:1205.0938, and with
arXiv:quant-ph/0410159 by other author
Solving the inhomogeneous Bethe-Salpeter equation
We develop an advanced method of solving homogeneous and inhomogeneous
Bethe-Salpeter equations by using the expansion over the complete set of
4-dimensional spherical harmonics. We solve Bethe-Salpeter equations for bound
and scattering states of scalar and spinor particles for the case of one meson
exchange kernels. Phase shifts calculated for the scalar model are in agreement
with the previously published results. We discuss possible manifestations of
separability for one meson exchange interaction kernels.Comment: 9 pages, 11 eps-figures. Talk presented by S. S. Semikh at XVII
International Baldin Seminar on High Energy Physics Problems "Relativistic
Nuclear Physics and Quantum Chromodynamics", September 27 - October 2, 2004,
Dubna, Russia; to appear in the proceedings of this conferenc
- …