1,727 research outputs found
Zero-Reachability in Probabilistic Multi-Counter Automata
We study the qualitative and quantitative zero-reachability problem in
probabilistic multi-counter systems. We identify the undecidable variants of
the problems, and then we concentrate on the remaining two cases. In the first
case, when we are interested in the probability of all runs that visit zero in
some counter, we show that the qualitative zero-reachability is decidable in
time which is polynomial in the size of a given pMC and doubly exponential in
the number of counters. Further, we show that the probability of all
zero-reaching runs can be effectively approximated up to an arbitrarily small
given error epsilon > 0 in time which is polynomial in log(epsilon),
exponential in the size of a given pMC, and doubly exponential in the number of
counters. In the second case, we are interested in the probability of all runs
that visit zero in some counter different from the last counter. Here we show
that the qualitative zero-reachability is decidable and SquareRootSum-hard, and
the probability of all zero-reaching runs can be effectively approximated up to
an arbitrarily small given error epsilon > 0 (these result applies to pMC
satisfying a suitable technical condition that can be verified in polynomial
time). The proof techniques invented in the second case allow to construct
counterexamples for some classical results about ergodicity in stochastic Petri
nets.Comment: 20 page
Maximal-entropy random walk unifies centrality measures
In this paper analogies between different (dis)similarity matrices are
derived. These matrices, which are connected to path enumeration and random
walks, are used in community detection methods or in computation of centrality
measures for complex networks. The focus is on a number of known centrality
measures, which inherit the connections established for similarity matrices.
These measures are based on the principal eigenvector of the adjacency matrix,
path enumeration, as well as on the stationary state, stochastic matrix or mean
first-passage times of a random walk. Particular attention is paid to the
maximal-entropy random walk, which serves as a very distinct alternative to the
ordinary random walk used in network analysis.
The various importance measures, defined both with the use of ordinary random
walk and the maximal-entropy random walk, are compared numerically on a set of
benchmark graphs. It is shown that groups of centrality measures defined with
the two random walks cluster into two separate families. In particular, the
group of centralities for the maximal-entropy random walk, connected to the
eigenvector centrality and path enumeration, is strongly distinct from all the
other measures and produces largely equivalent results.Comment: 7 pages, 2 figure
GEOWEALTH-US: spatial wealth inequality data for the United States, 1960–2020
Wealth inequality has been sharply rising in the United States and across many other high-income countries. Due to a lack of data, we know little about how this trend has unfolded across locations within countries. Examining the subnational geography of wealth is crucial because, from one generation to the next, it shapes the distribution of opportunity, disadvantage, and power across individuals and communities. By employing machine-learning-based imputation to link national historical surveys conducted by the U.S. Federal Reserve to population survey microdata, the data presented in this article addresses this gap. The Geographic Wealth Inequality Database (“GEOWEALTH-US”) provides the first estimates of the level and distribution of wealth at various geographical scales within the United States from 1960 to 2020. The GEOWEALTH-US database enables new lines of investigation into the contribution of spatial wealth disparities to major societal challenges including wealth concentration, income inequality, social mobility, housing unaffordability, and political polarization
Micromagnetic understanding of stochastic resonance driven by spin-transfertorque
In this paper, we employ micromagnetic simulations to study non-adiabatic
stochastic resonance (NASR) excited by spin-transfer torque in a
super-paramagnetic free layer nanomagnet of a nanoscale spin valve. We find
that NASR dynamics involves thermally activated transitions among two static
states and a single dynamic state of the nanomagnet and can be well understood
in the framework of Markov chain rate theory. Our simulations show that a
direct voltage generated by the spin valve at the NASR frequency is at least
one order of magnitude greater than the dc voltage generated off the NASR
frequency. Our computations also reproduce the main experimentally observed
features of NASR such as the resonance frequency, the temperature dependence
and the current bias dependence of the resonance amplitude. We propose a simple
design of a microwave signal detector based on NASR driven by spin transfer
torque.Comment: 25 pages 8 figures, accepted for pubblication on Phys. Rev.
The thermodynamics of urban population flows
Orderliness, reflected via mathematical laws, is encountered in different
frameworks involving social groups. Here we show that a thermodynamics can be
constructed that macroscopically describes urban population flows. Microscopic
dynamic equations and simulations with random walkers underlie the macroscopic
approach. Our results might be regarded, via suitable analogies, as a step
towards building an explicit social thermodynamics
Система электропривода задвижки паропровода
INTRODUCTION: Encephalitis is a rare complication of primary varicella-zoster virus (VZV) infection in immunocompetent children. METHODS: The clinical and laboratory findings of two girls with VZV-related encephalitis are reported. RESULTS: Both children presented with focal epileptic seizures, corresponding to cortical/subcortical as well as white matter lesions. The first showed a typical vesicular skin rash. She was easily diagnosed and made a rapid recovery during acyclovir and steroid treatment. In the second girl, a preceding measles-mumps-rubella virus vaccination and the absence of skin vesicles were misleading with respect to the diagnosis, which was finally proven by IgG seroconversion and intrathecal synthesis of IgG antibodies to VZV. She developed left parieto-occipital tissue necrosis and recovered only transiently during initial acyclovir/steroid treatment. Eight weeks after onset, progressive white matter demyelination and the occurrence of erythema nodosum in the lower limbs necessitated a second 4-month course of oral steroids. The VZV PCR from cerebrospinal fluid was negative in both children. CONCLUSIONS: Primary VZV infection may cause severe encephalitis that may occur without skin vesicles and lead to a chronic course with systemic vasculitis. The coincidence of vaccination and neurologic diseases offers no proof per se of a causal relationship
Long-Range Navigation on Complex Networks using L\'evy Random Walks
We introduce a strategy of navigation in undirected networks, including
regular, random, and complex networks, that is inspired by L\'evy random walks,
generalizing previous navigation rules. We obtained exact expressions for the
stationary probability distribution, the occupation probability, the mean first
passage time, and the average time to reach a node on the network. We found
that the long-range navigation using the L\'evy random walk strategy, compared
with the normal random walk strategy, is more efficient at reducing the time to
cover the network. The dynamical effect of using the L\'evy walk strategy is to
transform a large-world network into a small world. Our exact results provide a
general framework that connects two important fields: L\'evy navigation
strategies and dynamics on complex networks.Comment: 6 pages, 3 figure
A point process framework for modeling electrical stimulation of the auditory nerve
Model-based studies of auditory nerve responses to electrical stimulation can
provide insight into the functioning of cochlear implants. Ideally, these
studies can identify limitations in sound processing strategies and lead to
improved methods for providing sound information to cochlear implant users. To
accomplish this, models must accurately describe auditory nerve spiking while
avoiding excessive complexity that would preclude large-scale simulations of
populations of auditory nerve fibers and obscure insight into the mechanisms
that influence neural encoding of sound information. In this spirit, we develop
a point process model of the auditory nerve that provides a compact and
accurate description of neural responses to electric stimulation. Inspired by
the framework of generalized linear models, the proposed model consists of a
cascade of linear and nonlinear stages. We show how each of these stages can be
associated with biophysical mechanisms and related to models of neuronal
dynamics. Moreover, we derive a semi-analytical procedure that uniquely
determines each parameter in the model on the basis of fundamental statistics
from recordings of single fiber responses to electric stimulation, including
threshold, relative spread, jitter, and chronaxie. The model also accounts for
refractory and summation effects that influence the responses of auditory nerve
fibers to high pulse rate stimulation. Throughout, we compare model predictions
to published physiological data and explain differences in auditory nerve
responses to high and low pulse rate stimulation. We close by performing an
ideal observer analysis of simulated spike trains in response to sinusoidally
amplitude modulated stimuli and find that carrier pulse rate does not affect
modulation detection thresholds.Comment: 1 title page, 27 manuscript pages, 14 figures, 1 table, 1 appendi
Probabilistic Guarantees for Safe Deep Reinforcement Learning
Deep reinforcement learning has been successfully applied to many control
tasks, but the application of such agents in safety-critical scenarios has been
limited due to safety concerns. Rigorous testing of these controllers is
challenging, particularly when they operate in probabilistic environments due
to, for example, hardware faults or noisy sensors. We propose MOSAIC, an
algorithm for measuring the safety of deep reinforcement learning agents in
stochastic settings. Our approach is based on the iterative construction of a
formal abstraction of a controller's execution in an environment, and leverages
probabilistic model checking of Markov decision processes to produce
probabilistic guarantees on safe behaviour over a finite time horizon. It
produces bounds on the probability of safe operation of the controller for
different initial configurations and identifies regions where correct behaviour
can be guaranteed. We implement and evaluate our approach on agents trained for
several benchmark control problems
- …