22 research outputs found

    Building National Forest and Land-Use Information Systems: Lessons from Cameroon, Indonesia, and Peru

    Get PDF
    This working paper examines the institutional, human resources, and financial capacities of three countries that have developed a forest and land-use information system, and highlights common enabling factors and challenges

    Voices From the Congo Basin: Incorporating the Perspectives of Local Stakeholders for Improved REDD Design

    Get PDF
    Presents the concerns of the Congo Basin's local and indigenous communities, community NGOs, and parliament members over the design and implementation of Reduced Emissions from Deforestation and Forest Degradation such as inequitable revenue distribution

    Indonesia's Forest Moratorium: Impacts and Next Steps

    Get PDF
    The authors identify opportunities for progress with the recently extended Indonesian forest moratorium, a policy aiming to protect an area the size of Japan from development

    Structuring national and sub-national economic incentives to reduce emissions from deforestation in Indonesia

    Get PDF
    We estimate the impacts that alternative national and sub-national economic incentive structures for reducing emissions from deforestation (REDD+) in Indonesia would have had on greenhouse gas emissions and national and local revenue if they had been in place from 2000-2005. The impact of carbon payments on deforestation is calibrated econometrically from the pattern of observed deforestation and spatial variation in the benefits and costs of converting land to agriculture over that time period. We estimate that at an international carbon price of $10/tCO2e, a “basic voluntary incentive structure” modeled after a traditional payment-for-ecosystem-services (PES) program would have reduced emissions nationally by 62 MtCO2e/yr, or 8% below the without-REDD+ reference scenario (95% CI: 45-76 MtCO2e/yr; 6-9%), while generating a programmatic budget shortfall. By making four policy improvements—paying for net emission reductions at the scale of an entire district rather than site-by-site, paying for reductions relative to estimated business-as-usual levels rather than historical levels, sharing a portion of district-level revenues with the national government, and sharing a portion of the national government’s responsibility for costs with districts—an “improved voluntary incentive structure” would have reduced emissions by 175 MtCO2e/yr, or 22% below the reference scenario (95% CI: 136-207 MtCO2e/yr; 17-26%), while generating a programmatic budget surplus. A “regulatory incentive structure” such as a cap-and-trade or symmetric tax-and-subsidy program would have reduced emissions by 211/yr, or 26% below the reference scenario (95% CI: 163-247 MtCO2e/yr; 20-31%), and would not have required accurate predictions of business-as-usual emissions to guarantee a programmatic budget surplus.Climate change, land-use change, REDD+, reference levels, economic incentives

    An assessment of high carbon stock and high conservation value approaches to sustainable oil palm cultivation in Gabon

    Get PDF
    Industrial-scale oil palm cultivation is rapidly expanding in Gabon, where it has the potential to drive economic growth, but also threatens forest, biodiversity and carbon resources. The Gabonese government is promoting an ambitious agricultural expansion strategy, while simultaneously committing to minimize negative environmental impacts of oil palm agriculture. This study estimates the extent and location of suitable land for oil palm cultivation in Gabon, based on an analysis of recent trends in plantation permitting. We use the resulting suitability map to evaluate two proposed approaches to minimizing negative environmental impacts: a High Carbon Stock (HCS) approach, which emphasizes forest protection and climate change mitigation, and a High Conservation Value (HCV) approach, which focuses on safeguarding biodiversity and ecosystems. We quantify the forest area, carbon stock, and biodiversity resources protected under each approach, using newly developed maps of priority species distributions and forest biomass for Gabon. We find 2.7–3.9 Mha of suitable or moderately suitable land that avoid HCS areas, 4.4 million hectares (Mha) that avoid HCV areas, and 1.2–1.7 Mha that avoid both. This suggests that Gabon's oil palm production target could likely be met without compromising important ecosystem services, if appropriate safeguards are put in place. Our analysis improves understanding of suitability for oil palm in Gabon, determines how conservation strategies align with national targets for oil palm production, and informs national land use planning

    Effects of Demand-Side Restrictions on High-Deforestation Palm Oil in Europe on Deforestation and Emissions in Indonesia

    Get PDF
    13-C-AJFF-PU-29, 36This is an open access article under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license https://creativecommons.org/licenses/by/4.0/. Please cite this article as:Jonah Busch et al 2022 Environ. Res. Lett. 17 014035. https://doi.org/10.1088/1748-9326/ac435eDemand-side restrictions on high-deforestation commodities are expanding as a climate policy, but their impact on reducing tropical deforestation and emissions has yet to be quantified. Here we model the effects of demand-side restrictions on high-deforestation palm oil in Europe on deforestation and emissions in Indonesia. We do so by integrating a model of global trade with a spatially explicit model of land-use change in Indonesia. We estimate a European ban on high-deforestation palm oil from 2000 to 2015 would have led to a 8.9% global price premium on low-deforestation palm oil, resulting in 21 374 ha yr 121 (1.60%) less deforestation and 21.1 million tCO2 yr 121 (1.91%) less emissions from deforestation in Indonesia relative to what occurred. A hypothetical Indonesia-wide carbon price would have achieved equivalent emission reductions at $0.81/tCO2. Impacts of a ban are small because: 52% of Europe\u2019s imports of high-deforestation palm oil would have shifted to non-participating countries; the price elasticity of supply of high-deforestation oil palm cropland is small (0.13); and conversion to oil palm was responsible for only 32% of deforestation in Indonesia. If demand-side restrictions succeed in substantially reducing deforestation, it is likely to be through non-price pathways

    What causes deforestation in Indonesia?

    No full text
    We investigate the causes of deforestation in Indonesia, a country with one of the highest rates of primary natural forest loss in the tropics, annually between 2001 and 2016. We use high spatial resolution imagery made available on Google Earth to characterize the land cover types following a random selection of deforestation events, drawn from the Global Forest Change dataset. Notorious in the region, large-scale oil palm and timber plantations together contributed more than two-fifths of nationwide deforestation over our study period, with a peak in late aughts followed by a notable decline up to 2016. Conversion of forests to grasslands, which comprised an average of one-fifth of national deforestation, rose sharply in dominance in years following periods of considerable fire activity, particularly in 2016. Small-scale agriculture and small-scale plantations also contributed one-fifth of nationwide forest loss and were the dominant drivers of loss outside the major islands of Indonesia. Although relatively small contributors to total deforestation, logging roads were responsible for a declining share of deforestation, and mining activities were responsible for an increasing share, over the study period. Direct drivers of deforestation in Indonesia are thus spatially and temporally dynamic, suggesting the need for forest conservation policy responses tailored at the subnational level, and new methods for monitoring the causes of deforestation over time

    Impacts of Climate Change on the Potential Productivity of Eleven Staple Crops in Rwanda

    No full text
    This study quantifies the potential responses of 11 staple crop yields to projected changes in temperature and precipitation in Rwanda, using a cross sectional model based on yield data collected across more than 14,000 villages. We incorporated a relatively high spatial resolution dataset on crop productivity, considered a broad range of crops relevant to national agricultural production priorities, used environmental data developed specifically for Rwanda, and reported uncertainty both from our estimation model and due to uncertainty in future climate projections. We estimate that future climate change will have the largest impacts on potential productivity of maize, bush bean, and Irish potato. All three crops are likely to experience a reduction in potential yields of at least 10% under Representative Concentration Pathway (RCP) 4.5 and at least 15% under RCP 8.5 by 2050. Notably, these are important crops nationally, and three of the crops targeted by Rwanda’s Crop Intensification Program. We find that the most severe reductions in potential crop yields will occur in the drier eastern savannah and plateau regions, but that the impacts of climate change could be neutral or even positive in the highlands through mid-century. The refined spatial scale of our analysis allows us to identify potentially vulnerable regions where adaptation investments may need to be prioritized to support food security and climate resilience in Rwanda’s agricultural sector
    corecore