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Abstract 

We estimate the impacts that alternative national and sub-national economic incentive structures for 
reducing emissions from deforestation (REDD+) in Indonesia would have had on greenhouse gas  
emissions and national and local revenue if they had been in place from 2000-2005.  The impact of 
carbon payments on deforestation is calibrated econometrically from the pattern of observed 
deforestation and spatial variation in the benefits and costs of converting land to agriculture over that 
time period.  We estimate that at an international carbon price of $10/tCO2e, a “basic voluntary incentive 
structure” modeled after a traditional payment-for-ecosystem-services (PES) program would have 
reduced emissions nationally by 62 MtCO2e/yr, or 8% below the without-REDD+ reference scenario 
(95% CI: 45-76 MtCO2e/yr; 6-9%), while generating a programmatic budget shortfall.  By making four 
policy improvements—paying for net emission reductions at the scale of an entire district rather than site-
by-site, paying for reductions relative to estimated business-as-usual levels rather than historical levels, 
sharing a portion of district-level revenues with the national government, and sharing a portion of the 
national government’s responsibility for costs with districts—an “improved voluntary incentive 
structure” would have reduced emissions by 175 MtCO2e/yr, or 22% below the reference scenario (95% 
CI: 136-207 MtCO2e/yr; 17-26%), while generating a programmatic budget surplus.  A “regulatory 
incentive structure” such as a cap-and-trade or symmetric tax-and-subsidy program would have reduced 
emissions by 211/yr, or 26% below the reference scenario (95% CI: 163-247 MtCO2e/yr; 20-31%), and 
would not have required accurate predictions of business-as-usual emissions to guarantee a 
programmatic budget surplus. 

Keywords: Climate change; land-use change; REDD+; reference levels; economic incentives 
JEL :  Q20, Q23, Q50, Q54  
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Introduction 

An emerging international mechanism known as REDD+1 would offer payments to developing countries 
for voluntarily reducing emissions from deforestation below internationally agreed reference levels 
(UNFCCC 2010).  Individual forested countries would decide upon the specific set of policies and 
measures to implement to achieve nationwide emission reductions.  Accounting for these net emission 
reductions would ultimately take place at the national level, making national governments responsible for 
any internal geographical shifts of emissions (“leakage”), and providing incentivizes for systemic policy 
actions. But while governments would receive payments under REDD+, it is actors at the regional, 
provincial, local or household (“sub-national”) scales who are directly responsible for many land-use 
change decisions.  Thus the effectiveness of REDD+ in reducing emissions and generating revenue will 
depend on how national governments structure economic incentives so that sub-national actors will be 
encouraged to reduce emissions, and discouraged from increasing emissions. 

Developed countries have typically approached emission reduction policy through regulation such as cap-
and-trade or tax-and-subsidy programs.  Such regulatory approaches are considered economically ideal 
because they produce marginal incentives to reduce emissions for all regulated actors across all emission 
levels.  However, regulatory approaches may not be feasible where national governments are unable to 
universally monitor and enforce land-use regulations. 

Developing countries may instead prefer to structures incentives for REDD+ so that sub-national actors 
might voluntarily choose to maintain forests rather than convert land to agriculture or other uses.   A 
voluntary incentive structure for REDD+ would be characterized by four policy decisions.  An 
“accounting scale” would determine the administrative level at which net emission reductions are 
calculated and payments made.  Sub-national “reference levels” would be the level of emissions below 
which actors could be rewarded for reductions.  A “revenue sharing” arrangement would determine the 
portion of international income from carbon payments that would accrue to actors that reduce emissions, 
and the portion that would remain with the national government.   A “responsibility sharing” arrangement 
would determine the extent to which actors that increase emissions would be penalized, and the extent to 
which the national government would bear the cost of these increases through reduced international 
payments. 

A voluntary incentive structure for REDD+ would face design challenges that a regulatory incentive 
structure would not.  In a voluntary system, reference levels affect not only equity in the distribution of 
payments, as in a regulatory system, but effectiveness in reducing emissions as well (Cattaneo, 2010).   
Discrepancy between the reference level and counterfactual business-as-usual emission rates (Cattaneo, 
2011) can aggravate an adverse selection problem due to information asymmetry in a voluntary system 
(Montero, 2000; van Benthem and Kerr, 2011).  Actors with reference levels above their business-as-
usual emission rates could claim windfall payments beyond their actual emission reductions.  Meanwhile 
actors with reference levels below their business-as-usual rates could have insufficient incentive to 

                                                   
1 REDD+ refers in its entirety to “policy approaches and positive incentives on issues relating to reducing emissions 
from deforestation and forest degradation in developing countries; and the role of conservation, sustainable 
management of forests and enhancement of forest carbon stocks in developing countries” (UNFCCC 2010).  In this 
paper we examine only reducing emissions from deforestation. 
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participate in REDD+, and could even increase emissions above what they would have been in the 
absence of REDD+.   

As a result, a country’s choice of economic incentive structure for REDD+ will critically impact the level 
of greenhouse gas emission reductions it can achieve, the cost-effectiveness of these reductions, and the 
distribution of costs and benefits within the country.  In this paper we develop a spatially explicit land-use 
change model for Indonesia2 that allows us to compare the expected impact of alternative economic 
incentive structures on reductions in emissions from deforestation, and on the distribution of revenues and 
costs between a national government and local actors.  

We make several important methodological advances on previous models that have estimated the 
abatement potential of REDD+.  First, most previous studies have relied upon a deterministic 
“opportunity cost” assumption that deforestation would be avoided entirely wherever potential revenue 
from carbon payments exceeds net revenue from alternative land uses (Grieg-Gran 2006; Kindermann et 
al 2008; Naucler and Enkvist 2009; Busch et al 2009; Butler et al 2009; Venter et al 2009; Soares-Filho 
2010; World Bank Institute 2011).  In contrast, we calibrate the marginal impact of potential carbon 
payments on deforestation using the empirical relationship between the pattern of observed historical 
deforestation from 2000-2005 and spatial variation in the benefits and costs of converting land from forest 
to agriculture.  Such a “revealed preference” approach to estimating the impact of payments based on 
evidence from actual land-use decisions implicitly accounts for the richer set of factors that affect land-
use decisions in practice (e.g. Plantinga 1999; Stavins 1999; Lubowski 2006; Pfaff  2007a).  Second, most 
previous studies have modeled land-use responses to a single parameter—the carbon price.  By modeling 
land-use response to both the carbon price and the reference level, we are able to examine and compare a 
wider range of potential policies for REDD+.  Third, as in global partial equilibrium models (Kindermann 
et al. 2008; Busch et al. 2009) but unlike other opportunity cost (Grieg-Gran 2006) or regional (Soares-
Filho 2010) analyses, we model the “leakage” of deforestation, whereby reduced deforestation in one 
region produces market feedbacks that increase deforestation pressure elsewhere.   
 
We select Indonesia as a case study due to its large forested area (94 million hectares in 2010; FAO 
2010), high greenhouse gas emissions from deforestation and peat degradation (1.46 GtCO2e/yr, or 3.3% 
of global greenhouse gas emissions; CAIT 2011), and globally significant commitment to emission 
reductions.  In 2009 President Susilo Yudhoyono declared a national goal to reduce emissions by 26-41% 
below levels projected to 2020 (DNPI 2010).  In May 2010 Indonesia and Norway signed a landmark $1 
billion agreement on bilateral cooperation to reduce emissions from deforestation and forest degradation 
(Letter of Intent 2010).  Drivers of deforestation in Indonesia include large-scale conversion for industrial 
agriculture, small-scale conversion for community use, establishment of timber plantations, and planned 
and unplanned timber extraction (Ministry of Forestry, 2008).  The national and provincial governments 
are responsible for allocating the forest estate between land uses, while the right to approve permits for 
use was decentralized to district governments in 2002 (Government of Indonesia, 2002). 

                                                   
2 The free, open-source Open Source Impacts of REDD+ Incentive Spreadsheet for Indonesia (OSIRIS-Indonesia 
v1.4) model and dataset (Busch et al 2011) are made publicly available in MS Excel 2007 at 
http://www.conservation.org/osiris 
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We compare four scenarios for how a nationwide REDD+ incentive structure could have been 
implemented in Indonesia from 2000-2005.  First, we predict deforestation emissions in the absence of 
any carbon payment policies (“reference scenario”).  These business-as-usual deforestation emissions are 
predicted according to observable site characteristics and econometrically estimated parameters.  Second, 
we consider a basic REDD+ policy framework (“basic voluntary incentive structure”) consistent with 
traditional Payment for Ecosystem Services (PES) programs, which offer voluntary incentives at the scale 
of the individual project or landowner (e.g. OECD 2010).  Specifically, we model payments based on 
3km x 3km site-scale reductions in emissions below reference levels based on observed historical 
deforestation rates, with no revenue sharing or responsibility sharing.  Third, we sequentially add four 
potential policy improvements to the basic voluntary incentive structure (“improved voluntary incentive 
structure”).  In this scenario payments are based on emission reductions at the district scale, below 
reference levels projected to perfectly match assumed business-as-usual rates of deforestation, with 20% 
of revenues shared with the national government, and 20% of the responsibility for costs shared with 
districts.  Responsibility is devolved to each of the 401 districts to effectively implement jurisdiction-wide 
policies or payments to reduce net emissions within their borders.    Finally, we consider a scenario that is 
consistent with a cap-and-trade or symmetric tax-and-subsidy program for deforestation emissions 
(“regulatory incentive structure”).  In this scenario, districts which reduce emissions below their reference 
level are paid the full international carbon price, while districts which increase emissions above their 
reference level are penalized by the full international carbon price.   
 

Results 

In the absence of any carbon payments (“reference scenario”), deforestation predicted on the basis of 
observable land characteristics (691,000 ha/yr) was within 1% of observed historical deforestation 
(687,000 ha/yr), and predicted emissions (809 GtCO2e/yr) were within 6% of emissions estimated from 
observed deforestation (860 MtCO2e/yr).  Correlation between observed deforestation and predicted 
deforestation decreased at the finer geographic scales of the province (R=0.81; n=31; Table SI6), the 
district (R=0.68; n=401; SI Figure SI3; Table SI6) and the 3km x 3km “site” (R=0.34; n=166,296; Figure 
1a-b).   
 
We estimate that every $1000/ha increase in net present potential agricultural revenue increased 
deforestation by 1.4% (95% CI: 1.0-1.9%) at low-forest cover sites, and 7.3% (95% CI: 5.6-9.0%) at 
high-forest cover sites, controlling for other factors (see Table SI3).  The regions where the greatest 
emission reductions were expected to occur in response to site-level $10/tCO2e payments for reductions 
below business-as-usual rates with no leakage were the lowlands of Papua, Kalimantan, and Sumatra 
(Figure 2). 

At an international carbon price of $10/tCO2e, a basic voluntary incentive structure for REDD+ would 
have reduced net national deforestation emissions by an estimated 62 MtCO2e/yr, or 8% below the 
reference scenario (95% CI: 45-76 MtCO2e/yr; 6-9%).  In this scenario the national government would 
have paid $6.8 billion/yr to local sites for gross reductions below historical reference levels, but would 
have received just $610 million/yr by international buyers for net reductions below a national reference 
level, resulting in a programmatic budget shortfall over that period (Figure 3:1).   
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Implementing a series of four improvements to the basic voluntary incentive structure would have 
increased emission reductions while producing a programmatic budget surplus.  First, aggregating 
accounting from site-level to district level would have increased emission reductions to an estimated 105 
MtCO2e/yr, or 13% below the reference scenario (95% CI: 72-123 MtCO2e/yr; 9-15%), while reducing 
the budget shortfall from $6.0 billion/yr to $3.4 billion/yr (Figure 3:2).  Second, projecting reference 
levels to perfectly match business-as-usual emissions would have increased emission reductions to an 
estimated 202 MtCO2e/yr, or 25% below the reference scenario (95% CI: 160-229 MtCO2e/yr; 20-28%), 
while reducing the budget shortfall to $77 million/yr (Figure 3:3).  Third, sharing 20% of district revenues 
with the national government would have decreased emission reductions to an estimated 170 MtCO2e/yr, 
or 21% below the reference scenario (95% CI: 134-197 MtCO2e/yr; 17-24%), while producing a budget 
surplus of $283 million/yr (Figure 3:4).  Finally, sharing 20% of the costs of forgone income from  
international carbon payments with districts that increased emissions would have increased emission 
reductions to an estimated 175 MtCO2e/yr, or 22% below the reference scenario (95% CI: 136-207 
MtCO2e/yr; 17-26%), while producing a budget surplus of $331 million/yr (Figure 3:5).   

At an international carbon price of $10/tCO2e, a regulatory incentive structure for REDD+ would have 
reduced net national deforestation emissions by 211 MtCO2e/yr, or 26% below the reference scenario 
(95% CI: 163-247 MtCO2e/yr; 20-31%), while producing a budget surplus of $1.0 billion/yr (Figure 3:7).  
In this scenario the allocation of reference levels to districts would affect the distribution of revenue 
between the national government and the districts, but unlike under a voluntary incentive structure, would 
not affect the amount of emission reductions achieved (Figure 3:5-8). 

These estimates of abatement in response to a $10/tCO2e carbon price fall within the range of estimates 
of abatement potential from REDD+ in Southeast Asia produced by global forestry and land-use models: 
50 MtCO2e/yr in the Generalized Comprehensive Mitigation Assessment Process Model (GCOMAP); 70 
MtCO2e/yr in the Dynamic Integrated Model of Forestry and Alternative Land Use (DIMA); 875 
MtCO2e/yr in the Global Timber Model (GTM)) (Kindermann et al, 2008); and 233 MtCO2e/yr in a 
bottom-up model of REDD+ in smallholder landscapes and fire prevention in Indonesia (DNPI, 2010). 

 

Discussion 

Structuring REDD+ using basic voluntary incentives, as in a traditional PES program, could reduce 
emissions, but at a programmatic budget deficit to the national government.  Sites where historical 
reference levels greatly exceed the projected business-as-usual emissions would receive windfall 
payments beyond actual reductions.  Meanwhile, some sites where historical reference levels are lower 
than business-as-usual emissions would opt out of participation in REDD, increasing emissions and 
undermining net national emission reductions.  As a result, the national government would pay much 
more for gross site-level emission reductions than it would receive from international buyers for net 
national-level emission reductions.  In principle a national program for REDD+ could be justified even 
with a programmatic budget shortfall, as income from REDD+ to the country as a whole would be 
positive under such a program.  However, a national budget surplus would likely make national 
participation in REDD+ more politically palatable.  Surplus revenue could be used as a performance 
buffer against leakage or reversals (Cortez et al 2010), and could fund systemic national policies and 



 

6 
 

measures for reducing deforestation related to agriculture, infrastructure, land tenure or governance 
(Chomitz et al 2007; Pfaff et al 2010).   

By implementing a combination of four policies that comprise an improved voluntary incentive structure 
for REDD+, governments could reduce emissions far more than using basic voluntary incentives, while 
producing a programmatic budget surplus.  Projecting reference levels with perfect foresight of business-
as-usual deforestation rates would lead to greater emission reductions and lower budget shortfall.  Fewer 
windfall payments would be made to areas where historical emissions greatly exceed business-as-usual, 
while greater participation would be incentivized among areas where historical emissions are far below 
business-as-usual.  In practice the ability to perfectly forecast business-as-usual emissions is unlikely, 
although future research should investigate what combination of historical rates and observable 
geographic characteristics provides the most accurate prediction of future emissions.  In the absence of 
perfect prediction, aggregating the scale of accounting for net emission reductions from the site level to 
the district level would improve effectiveness and reduce shortfall, as over- and under-estimates of 
business-as-usual emissions at the site level would be averaged out at the higher spatial scale.  Even so, 
leakage of emissions would ensure at least some budget shortfall, in the absence of mechanisms for 
raising revenue for the national government.  Sharing a portion of the revenue accruing from local 
emission reductions with the national government could bring about a budget surplus from REDD+.  But 
unless these resources are effectively redeployed to reduce deforestation, too much revenue retained at the 
national level would reduce incentives for local actions, and correspondingly decrease national-scale 
emission reductions and revenue (Table SI7).  A national budget shortfall could also be reduced if local 
actors share for a portion of responsibility for the costs of lost international revenue arising from local 
increases in emissions.  Bearing a portion of the cost of emissions makes participating in REDD+ more 
attractive to local actors than alternative land-uses.   

Structuring REDD+ using regulatory incentives, such as a cap-and-trade or tax-and-subsidy program for 
deforestation emissions, would reduce emissions beyond what is possible through even an improved 
voluntary incentive structure.  Under a regulatory system, the level of emission reductions achieved 
would not be impacted by the allocation of reference levels.  This is because local actors would have the 
same marginal incentive to reduce emissions whether their emissions are above or below their allocation. 

External factors can critically influence the effectiveness of REDD+ incentives (Table SI8). A higher 
carbon price from an international market or fund would fundamentally motivate greater emission 
reductions.  This carbon price will be driven by global demand for emission reductions, and the extent to 
which those emission reductions can be purchased through REDD+.  A national reference level, 
determined through international negotiations, would indirectly affect local actors’ marginal incentives to 
reduce emissions.  A higher national reference level would result in greater national revenue for any given 
level of net national emission reductions, which in turn would allow a national government to offer a 
higher carbon price or higher sub-national reference levels to local actors, either of which would 
incentivize these local actors to undertake greater reduction in emissions.  Emission reductions and 
revenue would also be sensitive to an exogenous increase in agriculture prices, due for example to 
international leakage from REDD+ taking place in countries outside of Indonesia.  This suggests the 
importance of coupling REDD+ with complementary agricultural policies (Angelsen 2009) such as 
shifting agricultural expansion into low-carbon landscapes (Koh and Ghazoul 2010). 
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The model developed here can potentially be extended to examine a number of interesting topics beyond 
the scope of the current analysis.  These topics include a richer suite of land-use changes (e.g. logging and 
forest degradation; reforestation), policy decisions (e.g. land tenure; infrastructure; rural credit; 
agricultural subsidies and taxes; conservation of biodiversity and ecosystem services), or geographic 
regions.    

 
Conclusion 

Previous studies have established the potential of REDD+ as a cost-effective climate change mitigation 
option.  But how countries choose to structure economic incentives for REDD+ will critically impact the 
level of greenhouse gas emission reductions achieved, the cost-effectiveness of these reductions, and the 
distribution of costs and benefits within countries.  We have developed a spatial land-use change model 
for Indonesia that is able to estimate and map the impacts of alternative incentive structures on emission 
reductions and national and local revenue.  Our study’s findings extend beyond REDD+ in Indonesia to 
any geographic region or program in which emission reductions would be credited at an aggregate scale.  

Our model can guide the design of effective and equitable national and sub-national economics incentive 
structures for REDD+.  Countries can achieve the full economic potential for emission reductions by 
implementing a regulatory incentive structure, which also has the advantage that effectiveness in reducing 
emissions and maintaining a programmatic budget surplus would not require accurately predicting future 
deforestation patterns.  On the other hand, an approach to REDD+ in which participation is voluntary on 
the part of sub-national actors may be more politically appealing.  In this case, an improved economic 
incentive structure can be nearly as effective as a regulatory structure, if it is able to approximate 
business-as-usual emission rates for setting sub-national reference levels, aggregate accounting for net 
emission reductions to higher jurisdictional scales, and share revenues and responsibility for costs 
between the national government and local actors. 

 

Materials and Methods 

Data 

Forest cover in the year 2000 was estimated by applying a 50% threshold to the Percent Tree Cover Layer 
of the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS)-based Vegetation Continuous 
Fields (VCF) product for the year 2000 (Hansen et al, 2003).  The 50% threshold was selected to 
distinguish mature forest from agricultural fallows using high-resolution, Landsat-based forest cover 
maps for parts of Indonesia.  Use of this threshold has been further supported with similar analyses in 
other tropical regions (Leimgruber et al 2005; Harper et al 2007; Killeen et al 2007). 

Our dependent variable, percent deforestation for the period 2000-2005, was derived by rescaling rates of 
deforestation from the most accurate data available on the distribution of deforestation (tree cover loss 
estimates from the 463 m MODIS VCF product; Hansen et al. 2008) upward by a factor of 2.147 to match 
the most accurate data available on the total rate of deforestation (derived from analysis of a stratified, 
random sample of 77 18.5km x 18.5km blocks of 28.5m-resolution Landsat images; Hansen et al 2008; 
Hansen et al 2009).   
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Our primary explanatory variable, net present potential gross agricultural revenue, was obtained from 
Naidoo and Iwamura (2007).  In this data set the annual potential gross agricultural revenue in 2000 US$ 
was calculated by multiplying the annual yield of the highest-return agricultural commodity in every 
global agro-ecological zone (Fischer et al, 2002) by the average market price for that agricultural 
commodity from 1995-2005 (http://faostat.fao.org).  Net present value was obtained by summing annual 
revenue over 30 years and applying a discount rate of 10%, following the use of the same data set in the 
Stern Review (Grieg-Gran, 2006). 

Control variables included average slope and elevation (Jarvis et al, 2008), Euclidean distance from 
nearest national or regional roads and from provincial capitals (NGA, 2000), boundaries for 33 provinces 
and 440 districts from the year 2003, national parks and other protected areas from the year 2006, and 
logging concessions (HPH), timber concessions (HTI) and estate crop concessions (kebun) from the year 
2005 (Minnemeyer et al, 2009).   

Emissions from deforestation were calculated based on the release of 100% of above- and below-ground 
forest biomass carbon (Gibbs and Brown, 2007) plus 10% of soil carbon content in the top 30cm of non-
peat soil (FAO 2008).  On peat soils, soil emissions were estimated based on the average 30-year non-
discounted emissions for the agricultural land type (large croplands; small-scale agriculture; shrublands)  
to which such forest are converted, weighted by the area of each of these land types in historical 
conversion across Indonesia (Hoojier, 2010).  The resulting estimate of national average soil carbon 
emissions following deforestation on peatlands was 1474 tCO2e/ha, which compares to a tropical average 
of 1,486±183 tCO2e/ha calculated by Murdiyarso et al (2010).  Alternative peat emission factors were 
explored in a sensitivity analysis (Table SI8).  Peat extent was obtained for Sumatra (Wahyunto, 2003), 
Kalimantan (Wahyunto, 2004) and Papua (Wahyunto, 2006), which are considered to contain the vast 
majority of Indonesia’s peat soils.   

Data were standardized into a single equal-area projection of uniform extent and gridded into 226,348 
3km x 3km grid cells across Indonesia using ArcGIS 9.3.1.  This grid cell resolution was selected to 
comply with size limitations of MS Excel.  We removed grid cells for which values were missing from 
the agricultural revenue dataset (n=25,431) or other data sets (n=5,451) leaving 195,466 grid cells 
representing 91.8% of the land area and 95.8% of the forest area of the original data.   

 

Comparison of data with other published sources 

Observed deforestation in Indonesia from 2000-2005 was 687,000 ha/yr (Figure 1a), producing estimated 
emissions from deforestation of 860 MtCO2e/yr, of which an estimated 592 MtCO2e/yr was from forests 
on peat soil.  Deforestation compares to estimates that range from 310,000 ha/yr (FAO 2010) to 703,000 
ha/yr (Ministry of Forestry, 2008) to 1.87 million ha/yr (FAO 2005) over the 2000-2005 time period, or 
1.1 million ha/yr in 2005 (DNPI, 2010).  Emissions compare to estimates of 502 MtCO2e/yr from 
deforestation, of which 186 MtCO2e/yr was associated with peat (Ministry of Forestry, 2008); 1.459 
GtCO2e/yr over the time period from land use, land use change and forestry (CAIT, 2010); and 1.610 
GtCO2e/yr emissions in 2005 from land use change, of which 770 MtCO2e/yr was from peat (DNPI, 
2010).    
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Predicted deforestation without REDD+ 

We predicted site-level deforestation without carbon payments based on an empirical comparison of the 
pattern of observed historical deforestation and spatial variation in observable site characteristics.  Our 
empirical model builds on the theory that land-use decision makers will choose a rate of conversion from 
forest to agriculture that maximizes the present discounted value of a future stream of net benefits and 
costs of conversion.  Given this theoretical framework we regressed percent deforestation from 2000-
2005 on cost and benefit variables for all 166,343 3km x 3km grid cells for which forest cover was 
present in the year 2000 (Eq. 1). We proxied for fixed and variable costs of converting forest to 
agriculture using a constant term and a linear combination of sites’ slope, elevation, natural logarithm of 
the distance to the nearest road, natural logarithm of the distance to the nearest provincial capital, and the 
percent of cell contained within a national park, other protected area, logging concession, timber 
concession, or estate crop concession, following empirical literature on determinants of deforestation (e.g. 
Nelson and Hellerstein, 1995; Laurence et al 2002; Chomitz and Thomas 2003; Pfaff et al 2007b).  We 
proxied for the gross economic benefit of conversion using estimated net present value of potential gross 
agricultural revenue.  The combination of explanatory variables included in the regression was selected to 
maximize the district-level correlation between observed and predicted deforestation (Table SI6) without 
directly stratifying by geographic boundaries.  The selected variables also provided the best combination 
of parsimony and fit, as determined by the Akaike Information Criterion (AIC) (Table SI6).     

Recognizing that the statistical relationship between deforestation and site characteristics may vary across 
a country as large and geographically diverse as Indonesia, we stratified sites into four classes based on 
forest cover, with approximately 42,000 sites in each class (Table SI1).  Stratifying based on a larger 
number of forest cover classes did not improve the AIC.   Explanatory variables (Table SI2) were 
interacted with classes in the regression.   

We estimated the influence of explanatory variables on deforestation (Eq. 1) in Stata 9.2 using a Poisson 
quasi-maximum likelihood estimator (QMLE) (Wooldridge, 2002), which is theoretically consistent with 
3km x 3km forest cover loss being a count of independent, discrete binary 463m x 463m forest cover 
loss/maintenance observations from the remote sensing data (see also Burgess et al).  A Poisson model 
tolerates zero values, and generates a distribution of predicted values which fits the distribution of 
observed data, which is concentrated nearest to zero deforestation and diminishes toward greater levels of 
deforestation.  Because the data for percent deforestation is slightly overdispersed (mean=0.067; 
variance=0.078; n=166,343), we considered a negative binomial regression, resulting in outputs that are 
highly correlated with those of the Poisson regression (Table SI5, Table SI6).  Standard errors were 
specified to be robust to heteroskedacticity.  We did not treat for autocorrelation, consistent with an 
assumption that any autocorrelative effects between neighboring properties were subsumed within the 
3km x 3km grid cell size.  Alternative functional forms, explanatory variables, and stratification classes 
were explored to confirm robustness (Tables SI3-SI5).  

Explanatory variables used to construct the reference scenario were significantly correlated with observed 
deforestation, producing coefficients with expected signs and plausible magnitudes (Table SI3).  
Consistent with results widely observed elsewhere, deforestation was found to be higher at lower and 
flatter sites, and closer to roads and cities, controlling for other factors.  Deforestation was lower in 
national parks and other protected areas, and higher in timber and estate crop concessions, controlling for 
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other factors.  This likely reflects variation in underlying unobservable site characteristics associated with 
the non-random allocation of these land-use designations, in addition to the impact of the designations 
themselves (Pfaff et al, 2009).  Deforestation was lower in logging concessions, controlling for other 
factors, possibly reflecting a logging moratorium issued in May 2002, or that degradation due to selective 
logging may not have been identified in our deforestation data set.  Potential gross agricultural revenue 
was significantly and positively correlated with observed deforestation.  The 95% confidence interval 
around the coefficient on potential gross agricultural revenue was used to generate 95% confidence 
intervals around expected abatement under alternative REDD+ incentive structures. 

We used the econometric model (Eq. 1) to predict deforestation at every site in the absence of REDD+  
(Eq. 2) (the “reference scenario”).  This generates an effective land rental value for every site (Eq. 3), 
based not only on potential gross agricultural revenues but also on costs, which can be adjusted based on 
carbon payments to predict deforestation at every site under REDD+ (Figure SI1).   

 

Expected deforestation with REDD+ 

The expected equilibrium with REDD+ of deforestation at every 3km x3km site is modeled based on the 
REDD+ participation decisions and land-use decisions made by districts in response to the economic 
incentive structure set by the national government.  The district was selected as the logical default sub-
national actor in Indonesia because of the control of the district chief (bupati) over the distribution of 
permits for use of forested land; alternative accounting scales (3km x 3km site-level; province-level) were 
explored in a sensitivity analysis (Table SI7).  Districts receive payments based entirely on their own 
performance in reducing emissions, consistent with either a REDD+ system in which the national 
government acts as an intermediary, buying emission reductions from sub-national producers and selling 
to international buyers (Angelsen and Wertz-Kanounnikoff, 2008), or a REDD+ system in which sub-
national producers sell emission reductions directly to international buyers, with the national government 
responsible for the cost of “truing up” to the balance of net national emission reductions (a “nested” 
approach; Pedroni et al 2009; Cortez et al 2010).  For any structure of national economic incentives, a 
system of four equations—districts’ land use, districts’ participation, aggregate deforestation, and 
leakage—was resolved in equilibrium using OSIRIS v1.4 (Busch et al, 2011).  The distribution of 
expected deforestation in equilibrium is used to calculate the associated emissions and revenue.   

 

Districts’ land use  

In response to the national economic incentive structure, every district decides how much forest will be 
converted to agriculture at every site within its boundaries under two possible cases (Figure SI2).  In the 
first case, the district “opts in” to the voluntary REDD+ program by reducing its deforestation emissions 
below its reference level.  In this case, expected deforestation at every site within the district is shifted in 
the econometric model based on the marginal incentives provided by the carbon price and revenue 
sharing (Eq. 4-5).  In the second case, the district “opts out” by increasing its emissions above its 
reference level.   In this case, expected deforestation at every site within the district is shifted in the 
econometric model based on the marginal incentives provided by the carbon price and responsibility 
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sharing (Eq. 6-7).  We do not explicitly consider the specific internal measures employed by the districts 
to obtain these shifts in site-level deforestation.   

 

Districts’ participation decision 

Every district makes a binary decision whether or not to participate in REDD+ based on whether opting in 
or opting out results in greater combined potential revenue from agriculture and carbon.  That is, a district 
opts in if and only if the carbon revenue from opting in exceeds the forgone agricultural revenue from 
opting out, less any penalty from opting out (Eq. 8).  In the “basic voluntary incentives structure” scenario 
this participation decision is made at the site scale rather than the district scale.   A parameter reflecting 
districts’ preference for agricultural revenue relative to carbon revenue is initially set to 1.0, indicating 
that a dollar of income from carbon payments is equivalent to a dollar of income from agriculture.  This 
parameter is allowed to vary in a sensitivity analysis (Table SI8).   

 

Aggregate impacts 

Expected deforestation at all sites is used to calculate district-level deforestation (Eq. 9-10), district-level 
emissions (Eq. 11-12), carbon revenue accruing districts that opt in to REDD+ (Eq. 13), penalties to 
districts that opt out of REDD+ (Eq. 14), and deforestation nationwide (Eq. 15-16). 
 

Leakage of deforestation  

A decrease in deforestation in any district due to REDD+ raises potential agricultural revenue nationwide, 
which endogenously increases the pressure to deforest in other districts (Murray 2008).  The magnitude of 
leakage in our model is influenced through an “effective elasticity” parameter (Eq. 17) which is 
functionally equivalent to the price elasticity of an exponential demand curve for frontier agriculture 
(Busch et al 2009), but is assumed to also incorporate feedback in the domestic labor and agricultural 
capital markets.  This effective elasticity parameter was calibrated so that leakage of deforested area 
matched estimates generated by a 35-sector, 5-region general equilibrium model of the Indonesian 
economy (IRSA-Indonesia-5; Resosudarmo et al, 2009), in which a 10% exogenous decrease in estate 
crop production in each one of five regions in turn (Java/Bali; Sumatra; Kalimantan; Sulawesi; Eastern 
Indonesia) produced an average increase in production elsewhere within the country of 18% of the initial 
decrease in production.  A sensitivity analysis explored variations in intranational and international 
leakage.   

 

Parameter choices and sensitivities  

We tested the sensitivity of estimated impacts to a variety of policy variables (Table SI7) and model 
parameters (Table SI8).  We selected a default price of 2008 US$10/tCO2e for ease of comparison with 
other studies (e.g. Kindermann et al 2008; DNPI 2010); higher carbon prices resulted in greater 
abatement.  We selected 20% revenue sharing and 20% responsibility sharing as illustrative values in the 
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sophisticated voluntary incentive structure.  Greater levels of revenue sharing resulted in less overall 
abatement but enabled a programmatic budget surplus, while greater levels of responsibility sharing 
resulted in greater participation and greater overall abatement.   Optimal levels of revenue and 
responsibility sharing would depend on a country’s relative preference for program effectiveness and 
equity of distribution of revenues across scales.  Scaling sub-national reference levels downward from 
business-as-usual rates resulted in less participation and less overall abatement but enabled a 
programmatic budget surplus.   
 
Lower effective elasticity, associated with greater intranational leakage, and higher agricultural prices, 
associated with greater international leakage, resulted in fewer net emission reductions and less national 
government revenue.  District-level implementation and monitoring costs diminished net reductions and 
revenue very little, as some small districts opted out but larger districts continued to participate in 
REDD+.  Governance and institutional barriers, proxied by increases to the preference for agricultural 
revenue relative to carbon revenue, resulted in diminished emission reductions.  Enforcement costs, 
management costs and forgone logging revenue, proxied through increases to site-level transaction costs, 
also resulted in diminished emission reductions (Table SI8).   
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Figure 1 –Deforestation in Indonesia, 2000-2005.  a) observed deforestation (687 kha/yr; 860 mtCO2e/yr); b) 

modeled probability of deforestation without REDD+ (691 kha/yr; 809 mtCO2e/yr); c) modeled probability of deforestation with 
“improved voluntary incentive structure” for REDD+ (597 kha/yr; 633 mtCO2e/yr).  Results are outputs of OSIRIS-Indonesia 
v1.4 using the following parameter assumptions: carbon price=$10/tCO2e; “effective” price elasticity of demand for frontier 
agriculture=3.8; exogenous agricultural price increase=0%; peat emission factor=1474 tCO2e/ha; social preference for 
agricultural revenue=1.0; start-up and transaction costs=$0. 
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Figure 2 – Probable spatial distribution of abatement under REDD+, Indonesia 2000-2005.  
Expected abatement provided in response to a price of $10 tCO2e paid for voluntary site-level emission 
reductions below business-as-usual levels.  Darker blue represents greater voluntary abatement of 
emissions from deforestation in response to incentive payments.  Expected abatement is greatest where 
deforestation emissions would be high in the absence of REDD+ but low in the presence of REDD+.  
Results are outputs of OSIRIS-Indonesia v1.4 using the following parameter assumptions: carbon 
price=$10/tCO2e; “effective” price elasticity of demand for frontier agriculture=0.0; exogenous 
agricultural price increase=0%; peat emission factor=1474 tCO2e/ha; social preference for agricultural 
revenue=1.0; start-up and transaction costs=$0; site-level accounting; national government share of 
revenue=0%; national government share of responsibility=100%. 
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Figure 3 – Abatement, national revenue and local revenue under alternative national economic incentive 
structures for REDD+.  Incentive structures: (1) site-scale accounting; historical reference levels; no benefit 
sharing; no responsibility sharing (“basic voluntary incentive structure”); (2) Basic VIS + district-scale accounting; 
(3) Basic VIS + district-scale accounting + business-as-usual reference levels; (4) Basic VIS + district-scale 
accounting + business-as-usual reference levels + 20% revenue sharing; (5) district-scale accounting  + business-as-
usual reference levels + 20% revenue sharing + 20% responsibility sharing (“improved voluntary incentive 
structure”); (6) Improved VIS + 10% reduction to district reference levels; (7) district-scale accounting  + business-
as-usual reference levels + 0% revenue sharing + 100% responsibility sharing + 10% reduction to district reference 
levels (“regulatory incentive structure”); (8) Regulatory IS + 26% reduction to district reference levels.  Results are 
outputs of OSIRIS-Indonesia v1.4 using the following parameter assumptions: carbon price=$10/tCO2e; “effective” 
price elasticity of demand for frontier agriculture=0.0; exogenous agricultural price increase=0%; peat emission 
factor=1474 tCO2e/ha; social preference for agricultural revenue=1.0; start-up and transaction costs=$0. 
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Supplemental Information 

Table SI1 – Forest cover classes 

Forest cover class 

Minimum forest 

cover within class 

Maximum forest 

cover within class 

Number of cells 

within class 

No forest 0.0% 0.0% 29,123 

Low 2.8% 27.8% 40,141 

Low-medium 30.6% 69.4% 43,055 

Medium-high 72.2% 94.4% 43,141 

High 97.2% 100.0% 40,006 
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Table SI2 – Summary statistics  

Variable Forest cover class Mean Std. Dev. Min Max 
Deforestation rate (%/5yr) None - - - - 
 Low 10.1% 36.9% 0% 1251%3 
 Low-medium 5.5% 21.0% 0% 297% 
 Medium-high 3.4% 16.7% 0% 288% 
 High 2.4% 13.9% 0% 248% 

NPV of potential agricultural revenue 
($/ha) 

None $4,335 $5,104 $- $187,644 
Low  $2,811   $3,675   $-     $187,644  

 Low-medium  $2,173   $3,880   $-     $187,644  
 Medium-high  $1,644   $2,354   $-     $164,483  
 High  $1,304   $1,386   $-     $91,738  
Slope (°) None 3° 4° 0° 36° 
 Low 4° 5° 0° 40° 
 Low-medium 7° 7° 0° 40° 
 Medium-high 10° 8° 0° 37° 
 High 12° 7° 0° 35° 
Elevation (m) None 153 457 0 4496 
 Low 177 420 0 4375 
 Low-medium 348 585 0 4046 
 Medium-high 487 581 0 3794 
 High 565 540 0 3345 
Distance from road (km) None 37 76 0 606 
 Low 39 71 0 603 
 Low-medium 67 88 0 602 
 Medium-high 80 91 0 600 
 High 85 96 0 514 
Distance from capital (km) None 164 157 1 816 
 Low 183 159 1 790 
 Low-medium 238 167 3 778 
 Medium-high 260 162 1 755 
 High 283 177 3 752 
National park (%) None 3% 16% 0% 100% 
 Low 3% 16% 0% 100% 
 Low-medium 5% 20% 0% 100% 
 Medium-high 8% 26% 0% 100% 
 High 13% 33% 0% 100% 
Other protected area (%) None 2% 14% 0% 100% 
 Low 3% 16% 0% 100% 
 Low-medium 4% 19% 0% 100% 
 Medium-high 5% 20% 0% 100% 
 High 6% 22% 0% 100% 
Logging concession (%) None 4% 18% 0% 100% 
 Low 1% 11% 0% 100% 

 Low-medium 4% 18% 0% 100% 

 Medium-high 5% 22% 0% 100% 

 High 5% 21% 0% 100% 
Timber concession (%) None 3% 17% 0% 100% 
 Low 1% 11% 0% 100% 
 Low-medium 1% 11% 0% 100% 
 Medium-high 1% 8% 0% 100% 

                                                   
3 Deforestation rate exceeds 100% in some cases because total deforestation rates from MODIS data were scaled 
based on LANDSAT data.  See Data. 
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 High 0% 6% 0% 100% 

Estate crop concession (%) None 3% 16% 0% 100% 
 Low 1% 9% 0% 100% 

 Low-medium 1% 7% 0% 100% 

 Medium-high 0% 4% 0% 100% 

 High 0% 3% 0% 100% 

Forest zoned for conservation (%) None 5% 21% 0% 100% 
 Low 1% 11% 0% 100% 

 Low-medium 3% 16% 0% 100% 

 Medium-high 5% 21% 0% 100% 

 High 6% 24% 0% 100% 

Forest zoned for protection (%) None 4% 20% 0% 100% 
 Low 1% 9% 0% 100% 

 Low-medium 1% 12% 0% 100% 

 Medium-high 2% 13% 0% 100% 

 High 2% 15% 0% 100% 

Forest zoned for production (%) None 15% 36% 0% 100% 
 Low 5% 21% 0% 100% 

 Low-medium 7% 25% 0% 100% 

 Medium-high 7% 26% 0% 100% 

 High 7% 25% 0% 100% 

Forest zoned for conversion (%) None 10% 30% 0% 100% 
 Low 3% 16% 0% 100% 

 Low-medium 3% 18% 0% 100% 

 Medium-high 2% 16% 0% 100% 

 High 2% 12% 0% 100% 
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Table SI3 – Determinants of forest cover loss: Model specifications 1-3.  Robust standard errors; 
n=166,297.  A coefficient of 0.1 indicates that each unit increase in the driver variable is correlated with 
a 10% increase in the probability of deforestation. 

Regression Model  (1) (2) (3) 

Description  Poisson; stratified  
by forest cover; includes 
concession boundaries 

Poisson; stratified  
by forest cover; no 

concession boundaries 

Poisson; stratified  
by forest cover; includes 

forest allocation 

Driver Forest cover class  Coefficient  z value 
 
Coefficient  z value  Coefficient  z value 

NPV of potential 
agricultural revenue 
(1000$/ha) 

Low 0.0142 6.15 0.0153 6.82 0.0144 6.08 

 Low-medium 0.0116 5.15 0.0144  7.39 0.0134 6.31 
 Medium-high 0.0161 3.63 0.0213  5.36 0.0205 5.26 
 High 0.0732 8.38 0.0742  8.65 0.0713 8.23 
Slope (°) Low -0.024 -3.26 -0.031 -4.28 -0.026 -3.56 

 Low-medium -0.079 -11.52 -0.091 -12.91 -0.086 -12.25 
 Medium-high -0.119 -20.66 -0.133 -21.94 -0.126 -20.72 
 High -0.143 -20.44 -0.151 -21.15 -0.146 -20.03 
Elevation (m) Low -0.00185 -12.09 -0.00197 -12.64 -0.00186 -11.97 

 Low-medium -0.00152 -11.54 -0.00167 -11.97 -0.00169 -11.74 
 Medium-high -0.00165 -17.04 -0.00192 -17.62 -0.00194 -17.56 
 High -0.00259 -18.19 -0.00291 -18.58 -0.00285 -18.05 
Log distance from 
road (km) 

Low 0.007 0.63 0.019 1.70 -0.048 -4.2 

 Low-medium -0.069 -6.59 -0.088 -9.19 -0.167 -15.84 
 Medium-high -0.125 -8.32 -0.202 -16.30 -0.279 -18.76 
 High -0.190 -8.26 -0.272 -14.31 -0.348 -16.57 
Log distance from 
capital (km) 

Low -0.098 -4.8 -0.105 -5.44 -0.142 -7.21 

 Low-medium -0.325 -17.55 -0.338 -19.10 -0.338 -18.75 
 Medium-high -0.293 -11.14 -0.313 -12.07 -0.245 -9.77 
 High 0.042 1.15 0.013 0.37 0.079 2.27 
National park (%) Low -0.688 -5.75 -0.815 -6.82   

 Low-medium -0.378 -3.63 -0.521 -5.01   
 Medium-high -0.684 -6.19 -0.833 -7.45   
 High -0.160 -1.6 -0.270 -2.71   
Other protected 
area (%) 

Low -0.570 -5.19 -0.701 -6.43   

 Low-medium -0.615 -5.26 -0.722 -6.21   
 Medium-high -0.865 -9.72 -0.936 -10.44   
 High -0.945 -9.38 -1.044 -10.57   
Logging concession 
(%) 

Low -0.2907 -2.95     

 Low-medium -0.4221 -6.94     
 Medium-high -0.2799 -4.7     
 High -0.03339 -0.55     
Timber concession 
(%) 

Low 0.4302 6.01     

 Low-medium 0.8694 15.21     
 Medium-high 1.17 16.92     
 High 1.008 9.4     
Estate crop 
concession (%) 

Low 0.999 14.24     
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 Low-medium 1.143 16.04     
 Medium-high 1.152 10.27     
 High 1.233 7.3     
Forest zoned for 
conservation (%) 

Low     0.318 2.73 

 Low-medium     0.527 6.05 
 Medium-high     0.361 3.39 
 High     0.651 4.77 
Forest zoned for 
protection (%) 

Low     -0.210 -1.88 

 Low-medium     -0.094 -1.03 
 Medium-high     -0.125 -1.17 
 High     0.362 2.77 
Forest zoned for 
production (%) 

Low     0.699 14.66 

 Low-medium     0.661 14.12 
 Medium-high     0.480 6.7 
 High     0.531 4.52 
Forest zoned for 
conversion (%) 

Low     0.628 11.61 

 Low-medium     0.660 11.82 
 Medium-high     0.585 7.02 
 High     0.959 7.76 
Forest cover class 
(0/1) 

Low 0.004 0.02 -0.525 -2.39 0.136 0.57 
Low-medium 1.182 5.25 0.814 3.70 1.265 5.35 

 Medium-high 1.305 5.34 1.215 5.01 1.371 5.37 
 High (dropped)  (dropped)  (dropped)  
Intercept  -1.729 -8.35 -1.062  -5.26 -1.743 -7.93 
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Table SI4 – Determinants of forest cover loss: Model specifications 4-6.  Robust standard errors; 
n=166,297.  A coefficient of 0.1 indicates that each unit increase in the driver variable is correlated with 
a 10% increase in the probability of deforestation. 

Regression Model  (4) (5) (6) 

Description  Poisson; 
unstratified 

Poisson; 
unstratified; 

weighted by forest 
cover 

Poisson; 
stratified by region 

Driver Region 
 
Coefficient  z value Coefficient  z value 

 
Coefficient  z value 

NPV of potential 
agriculatural revenue 
(1000$/ha) 

All regions 0.0162 10.93 0.0175 232 

  
      Java     -0.0001 -0.05 
      Sumatra     0.024  2.97 
      Kalimantan     0.026  2.08 
      Sulawesi     0.029  2.27 
      E. Indonesia     0.025  7.14 
Slope (°) All regions -0.090 -24.5 -0.111 -788   
      Java     0.005 0.27 
      Sumatra     -0.119 -17.93 
      Kalimantan     -0.141 -14.66 
      Sulawesi     -0.057 -4.75 
      E. Indonesia     -0.021 -4.16 
Elevation (m) All regions -0.00188 -24.79 -0.00185 -687   
      Java     -0.0019 -6.88 
      Sumatra     -0.0023 -15.13 
      Kalimantan     -0.0033 -10.34 
      Sulawesi     -0.0029 -10.36 
      E. Indonesia     -0.0012 -13.55 
Log distance from 
road (km) 

All regions -0.064 -9.80 -0.098 -337 
  

      Java     0.041 0.33 
      Sumatra     -0.025 -2.29 
      Kalimantan     0.121 8.06 
      Sulawesi     0.021 0.83 
      E. Indonesia     -0.076 -2.45 
Log distance from 
capital (km) 

All regions -0.204 -17.11 -0.231 -433 
  

      Java     0.059 0.38 
      Sumatra     0.033 1.1 
      Kalimantan     0.104 3.6 
      Sulawesi     0.054 1.07 
      E. Indonesia     -0.078 -1.71 
National park (%) All regions -0.537 -9.89 -0.438 -196   
      Java     -1.629 -4.64 
      Sumatra     -1.170 -7.27 
      Kalimantan     -1.071 -7.64 
      Sulawesi     0.674  2.99 
      E. Indonesia     0.318  5.81 
Other protected area 
(%) 

All regions -0.664 -11.04 -0.770 -329 
  

      Java     -3.150 -3.77 
      Sumatra      -0.945 -7.56 
      Kalimantan     -0.51 -3.98 
      Sulawesi     -0.536 -3.34 
      E. Indonesia     -0.666 -7.82 
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Logging concession 
(%) 

All regions -0.3177 -9.05 -0.197 -154 
  

      Java     - - 
      Sumatra     0.170  2.37 
      Kalimantan     -0.627 -8.96 
      Sulawesi     -0.662 -5.26 
      E. Indonesia     -0.003 -0.1 
Timber concession 
(%) 

All regions 0.813 22.86 0.999 654   

      Java     - - 
      Sumatra     0.918  20.57 
      Kalimantan     0.402  5.39 
      Sulawesi     0.232 0.52 
      E. Indonesia      -0.798 -8.1 
Estate crop 
concession (%) 

All regions 1.107 23.99 1.152 513   

      Java     - - 
      Sumatra     0.681  12.11 
      Kalimantan     1.287  14.08 
      Sulawesi     1.188  4.69 
      E. Indonesia     -0.017 -0.09 
Region (0/1)      Java     (dropped)  
      Sumatra     0.790 2.21 
      Kalimantan     0.062 0.26 
      Sulawesi     0.233 1.25 
      E. Indonesia     0.215 1.44 
Intercept  -1.036 -19.35 -0.809 -313 -3.372 -4.81 
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Table SI5 – Determinants of forest cover loss: Model specifications 7-9.  Robust standard errors; 
n=166,297.  A coefficient of 0.1 indicates that each unit increase in the driver variable is correlated with 
a 10% increase in the probability of deforestation. 

Regression Model  (7) (8) (9) 

Description  Poisson; stratified  
by forest cover 

Logit; stratified  
by forest cover 

Negative binomial; 
stratified by forest cover 

Driver Forest cover class  Coefficient  z value  Coefficient  z value  Coefficient  z value 
NPV of potential 
agricultural revenue 
(1000$/ha) 

Low 0.0121 5.03 0.0039 1.41 0.0142 6.14 

Low-medium 0.0104 4.32 -0.0028 -1.16 0.0116 5.15 
Medium-high 0.0139 3.00 0.0118 2.16 0.0161 3.63 

 High 0.0512 4.21 0.0795 9.18 0.0733 8.28 
Slope (°) Low -0.017 -2.15 0.0021 0.59 -0.024 -3.26 
 Low-medium -0.072 -10.16 -0.0352 -16.15 -0.079 -11.51 
 Medium-high -0.108 -18.89 -0.0457 -23.3 -0.119 -20.66 
 High -0.118 -16.97 -0.0635 -30.61 -0.143 -20.44 
Elevation (m) Low -0.002 -10.77 -0.00094 -13.95 -0.0019 -12.09 
 Low-medium -0.001 -9.72 -0.00040 -13.99 -0.0015 -11.54 
 Medium-high -0.001 -15.3 -0.00041 -15.85 -0.0017 -17.05 
 High -0.002 -16.47 -0.00040 -14.07 -0.0026 -18.19 
Log distance from 
road (km) 

Low   0.033 5.08 0.007 0.63 
Low-medium   0.084 12.46 -0.069 -6.6 

 Medium-high   0.184 23.5 -0.125 -8.32 
 High   0.256 26.37 -0.190 -8.26 
Log distance from 
capital (km) 

Low   0.068 5.07 -0.098 -4.8 
Low-medium   0.123 8.51 -0.325 -17.54 

 Medium-high   0.309 18.66 -0.293 -11.12 
 High   0.331 17.87 0.043 1.18 
Remoteness Low -0.0000944 -3.07     
 Low-medium -0.0003043 -18.71     
 Medium-high -0.0002532 -15.52     
 High -0.000045 -2.42     
National park (%) Low -0.565 -4.75 -0.219 -3.16 -0.689 -5.75 
 Low-medium -0.232 -2.24 -0.232 -4.24 -0.378 -3.63 
 Medium-high -0.418 -3.84 -0.275 -6.63 -0.683 -6.19 
 High 0.048 0.47 -0.095 -2.62 -0.159 -1.6 
Other protected area Low -0.545 -4.78 -0.096 -1.38 -0.570 -5.19 
 Low-medium -0.764 -7.66 -0.194 -3.32 -0.615 -5.27 
 Medium-high -0.856 -10.36 -0.098 -1.82 -0.865 -9.73 
 High -0.763 -7.87 -0.027 -0.53 -0.945 -9.38 
Logging concession Low -0.518 -4.75 -0.370 -8.49 -0.292 -2.95 
 Low-medium -0.450 -2.24 -0.353 -12.17 -0.422 -6.95 
 Medium-high -0.347 -3.84 -0.270 -10.24 -0.280 -4.71 
 High 0.096 0.47 -0.141 -5.07 -0.034 -0.56 
Timber concession Low 0.303 -4.78 0.050 1.16 0.430 6.02 
 Low-medium 0.762 -7.66 0.166 3.49 0.869 15.21 
 Medium-high 0.900 -10.36 0.455 7.02 1.170 16.91 
 High 1.134 -7.87 0.402 5.09 1.008 9.41 
Estate crop Low 1.062 -4.72 0.203 3.87 0.999 14.23 
 Low-medium 1.107 -7.55 0.551 6.89 1.143 16.04 
 Medium-high 1.197 -6.56 0.779 6.03 1.152 10.27 
 High 1.368 1.72 0.619 3.72 1.233 7.31 
Forest cover class Low 0.303 3.49 1.275 11.03 0.008 0.04 
 Low-medium 0.301 3.45 1.740 14.56 1.186 5.28 
 Medium-high 0.352 3.68 0.581 4.55 1.308 5.35 
 High (dropped)  (dropped)  (dropped)  
Intercept  -2.571 -32.36 -1.868 -19.35 -1.734 -8.37 
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 Table SI6 – Model specifications compared. 

Regression 
Model 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Description Poisson; 
stratified  
by forest 
cover; 

includes 
concession 
boundaries 

Poisson; 
stratified  
by forest 
cover; no 

concession 
boundaries 

Poisson; 
stratified  
by forest 
cover; 

includes 
forest 

allocation 

Poisson; 
unstratified 

Poisson; 
unstratified; 
weighted by 
forest cover 

Poisson; 
stratified 
by region 

Poisson; 
stratified  
by forest 

cover 

Logit; 
stratified  
by forest 

cover 

Negative 
binomial; 
stratified 
by forest 

cover 

Correlation 
coefficient (R) 
between 
modeled and 
observed 
deforestation 
(between 
modeled and 
observed 
emissions) 

         

Site-level 0.34 
(0.41) 

0.29 
(0.35) 

0.30 
(0.36) 

0.33 
(0.39) 

0.33 
(0.40) 

0.39 
(0.45) 

0.19 
(0.22) 

0.09 
(0.22) 

0.34 
(0.41) 

District-level  0.68 
(0.72) 

0.59 
(0.63) 

0.63 
(0.66) 

0.63 
(0.67) 

0.66 
(0.70) 

0.78 
(0.82) 

0.52 
(0.52) 

0.40 
(0.48) 

0.68 
(0.72) 

Province-level  0.81 
(0.84) 

0.72 
(0.73) 

0.77 
(0.78) 

0.77 
(0.79) 

0.80 
(0.83) 

0.92 
(0.95) 

0.63 
(0.63) 

0.55 
(0.59) 

0.81 
(0.84) 

Region-level 0.82 
(0.79) 

0.74 
(0.67) 

0.79 
(0.73) 

0.78 
(0.73) 

0.82 
(0.78) 

0.98 
(0.97) 

0.66 
(0.54) 

0.62 
(0.55) 

0.82 
(0.79) 

National total 
deforestation 

(1000ha/yr; 
observed=687) 

692 693 695 710 685 705 531 8862 692 

National total 
emissions 

(million 
tCO2e/yr; 

observed=860) 

809 802 819 820 801 831 586 8149 809 

R^2 0.14 0.12 0.13 0.13 0.17 0.16 0.12 0.08 - 
AIC 58,805 59,961 59,427 59,310 2,380,000 57,209 48,969 212,827 58,806 
BIC 59,246 60,282 59,827 59,420 2,380,000 57,730 49,365 213,268 59,257 
Correlation 
coefficient (R) 
between 
modeled 
deforestation 
(emissions) and 
model (1) 

         

Site-level 1.00 
(1.00) 

0.83 
(0.86) 

0.80 
(0.83) 

0.95 
(0.97) 

0.97 
(0.98) 

0.86 
(0.90) 

0.83 
(0.80) 

0.28 
(0.57) 

1.00    
(1.00) 

District-level  1.00 
(1.00) 

0.98 
(0.98) 

0.98 
(0.98) 

0.99 
(0.99) 

1.00 
(1.00) 

0.93 
(0.94) 

0.94 
(0.91) 

0.72 
(0.83) 

1.00    
(1.00) 

Province-level  1.00 
(1.00) 

0.99 
(0.98) 

0.99 
(0.99) 

1.00 
(0.99) 

1.00 
(1.00) 

0.95 
(0.95) 

0.96 
(0.94) 

0.85 
(0.88) 

1.00    
(1.00) 

Region-level 1.00 
(1.00) 

0.99 
(0.99) 

1.00 
(0.99) 

1.00 
(0.99) 

1.00 
(1.00) 

0.90 
(0.91) 

0.96 
(0.93) 

0.83 
(0.87) 

1.00    
(1.00) 
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Table SI7 – Impact of economic incentive policies on climate and revenue 

  $10/tCO2e  $20/tCO2e  
  A N D A N D 
Policy variables       
Accounting scale; 
reference level  
design 

Site-level; 
historical 

62 -$5,970 $6,590 114 -$11,656 $13,929 

 Site-level; C-I 91 -$3,996 $4,906 186 -$7,273 $10,998 
 Site-level; BAU 199 -$125 $2,117 303 -$476 $6.543 
 District; historical 105 -$3,356 $4,408 182 -$6,446 $10,088 
 District; C-I 128 -$2,139 $3,424 231 -$3,935 $8,552 
 District; BAU* 202 -$77 $2,095 304 -$331 $6,409 
 Province; 

historical 
115 -$2,392 $3,456 192 -$4,686 $8,529 

 Province; C-I 130 -$1,637 $2,941 255 -$2,559 $7,654 
 Province; BAU 205 -$41 $2,096 310 -$198 $6,392 
Revenue sharing 0%* 202 -$77 $2,095 304 -$331 $6,409 
 20% 170 $283 $1,415 270 $876 $4,525 
 40% 135 $504 $844 227 $1,702 $2,838 
 60% 95 $550 $396 169 $1,982 $1,412 
 80% 40 $310 $85 95 $1,496 $396 
 100% 0 $0 $0 0 $0 $0 
Cost sharing 0% 211 $0 $2,117 319 $0 $6,434 
 20% 210 -$3 $2,116 318 -$14 $6,433 
 40% 210 -$8 $2,117 317 -$41 $6,439 
 60% 208 -$18 $2,114 315 -$87 $6,451 
 80% 208 -$33 $2,118 313 -$160 $6,467 
 100%* 202 -$77 $2,095 304 -$331 $6,409 
District reference 
level as % of 
BAU emissions 

0% 0 $0 $0 0 $0 $0 

 20% 0 $0 $0 0 $0 $0 
 40% 0 $0 $0 23 $362 $95 
 60% 28 $221 $60 197 $2,653 $1,285 
 80% 150 $743 $760 271 $1,925 $3,493 
 100%* 202 -$77 $2,095 304 -$331 $6,409 
 120% 209 -$1,626 $3,717 313 -$3,348 $9,612 

 (A) Abatement (MtCO2e/yr) 
(N) National Government Revenue (million $/yr)  
(D) District Revenue (million $/yr) 
*default parameter value   
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Table SI8 – Sensitivity of marginal abatement cost to variation in key parameters.  Results are outputs of 
OSIRIS-Indonesia v1.4 using the following default parameter assumptions: carbon price=$10/tCO2e; “effective” 
price elasticity of demand for frontier agriculture=0.0; exogenous agricultural price increase=0%; peat emission 
factor=1474 tCO2e/ha; social preference for agricultural revenue=1.0; start-up and transaction costs=$0. 

  Basic Voluntary Incentive 
Structure 

Improved Voluntary 
Incentive Structure 

Regulatory Incentive 
Structure 

  A N D A N D A N D 
Model Parameters          
 Carbon Price 
(tCO2e/yr) 

$5 32 -$3,003 $3,162 99 $95 $403 126 $404 $276 

 $10* 62 -$5,970 $6,590 175 $331 $1,431 211 $808 $1,349 
 $15 89 -$8,857 $10,196 234 $659 $2,868 272 $1,213 $2,945 
 $20 114 -11,656 $13,929 278 $1,030 $4,564 319 $1,617 $4,875 
Effective 
elasticity 

 
0 

 
71 

 
-$5,894 

 
$6,606 

 
206 

 
$413 

 
$1,652 

 
242 

 
$808 

 
$1,618 

 1.9 66 -$5,935 $6,598 192 $379 $1,541 227 $808 $1,486 
 3.8* 62 -$5,970 $6,590 175 $331 $1,431 211 $808 $1,349 
 5.7 58 -$6,002 $6,582 161 $281 $1,343 195 $808 $1,235 
Exogenous 
agricultural 
price increase 

0%* 62 -$5,970 $6,590 175 $331 $1,431 211 $808 $1,349 

 20% 54 -$6,039 $6,575 170 $312 $1,395 206 $808 $1,313 
 50% 41 -$6,143 $6,555 158 $270 $1,326 199 $808 $1,259 
Peat emission 
factor 
(tCO2e/ha)1 

947.5 40 -$5,004 $5,401 120 $224 $984 147 $686 $836 

 1474.2* 62 -$5,970 $6,590 175 $331 $1,431 211 $808 $1,349 
 2099.8 95 -$7,098 $8,044 256 $490 $2,076 298 $954 $2,092 
Social 
preference for 
agricultural 
revenue 

 
 
1.0* 

 
 
62 

 
 
-$5,970 

 
 
$6,590 

 
 
175 

 
 
$331 

 
 
$1,431 

 
 
211 

 
 
$808 

 
 
$1,349 

 2.0 58 -$5,989 $6,571 167 $316 $1,358 211 $808 $1,349 
 3.0 56 -$5,999 $6,554 162 $310 $1.318 211 $808 $1,349 
National 
reference level 
as % of BAU 
emissions 

 
 
80% 

 
 
62 

 
 
-$7,587 

 
 
$6,590 

 
 
175 

 
 
-$1,286 

 
 
$1,431 

 
 
211 

 
 
-$808 

 
 
$1,349 

 100% 62 -$5,970 $6,590 175 $331 $1,431 211 $808 $1,349 
 120% 62 -$4,353 $6,590 175 $1,948 $1,431 211 $2,425 $1,349 
District-level 
start-up and 
transaction 
costs 
($/district/ 5yr) 

$0*    175 $331 $1,431 211 $808 $1,349 

 $1 million    174 $329 $1,420 211 $808 $1,349 

 $5 million    171 $325 $1,396 211 $808 $1,349 
 $10 million    170 $322 $1,382 211 $808 $1,349 
Per-hectare 
start-up and 
transaction 
costs ($/ha/5yr) 

$0* 62 -$5,970 $6,590 175 $331 $1,431 211 $808 $1,349 

 $1,000 59 -$5,974 $6,563 169 $323 $1,370 202 $808 $1,268 
 $5,000 46 -$5,985 $6,449 127 $247 $1,025 173 $808 $996 
 $10,000 32 -$5,994 $6,318 82 $161 $658 143 $808 $709 

(A) Abatement (MtCO2e/yr) 
(N) National Government Revenue (million $/yr)  
(D) District Revenue (million $/yr) 
*default parameter value  
1Range of peat emission factors based on “low,” “likely” and “high” estimates from Hoojier et al (2010).
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Figure SI1 – Predicted site-level deforestation as a function of potential agricultural and carbon 
revenue.  Many previous studies have estimated the abatement potential of REDD+ policies based on the 
deterministic assumption that deforestation could be avoided entirely if and only if revenue from carbon 
payments exceeds income from alternative land uses (“opportunity cost approach”).  We estimate the 
marginal impact of potential carbon payments on site-level deforestation by using a Poisson regression to 
determine the empirical relationship between the pattern of observed historical deforestation and spatial 
variation in the benefits and costs of converting forested land to agriculture (“revealed preference 
approach”). 
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Figure SI2 – District-level allocation of land between forest and agriculture.  Based on Figure 2 in 
Busch et al 2009.  Line a represents the district-level supply curve for emissions-producing agricultural 
expansion into forest in the absence of a REDD+ mechanism.  Greater potential agricultural revenue per 
hectare produces greater emissions from deforestation.  Line b represents the district supply curve if the 
district opts into REDD+ by reducing its emissions below its reference level.  This supply curve is shifted 
inward by the carbon payment, which is a function of the carbon price and the revenue sharing 
arrangement.  Line c is the district supply curve is the district opts out of REDD+ by increasing its 
emissions above its reference level.  This supply curve is shifted inward by the penalty, which is a 
function of the carbon price and the responsibility sharing arrangement.  The district chooses the quantity 
of emissions from agricultural expansion m or n which provides greater total carbon revenue and 
agricultural revenue at the equilibrium agricultural price.   
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Figure S3 – Observed deforestation and modeled deforestation compared for forested districts of 
Indonesia, 2000-2005.  (n=401; R=0.68) Modeled deforestation predicted using model specification 1 
(Poisson; stratified by forest cover).  Heavy dotted 45o line indicates modeled deforestation equal to 
observed deforestation within a district.  Light dotted lines indicate the boundaries within which modeled 
deforestation is within a factor of ten of observed deforestation. 
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Equations 

 

Eq. 1 – Predicting the probability of deforestation in the absence of REDD+ based on observable site 
characteristics 

�� � exp �	
� � �′	
� � 	
��� � �� 

Here �� � ���� � ��′�/��� is percent deforestation at site i, where ���is forest cover at site i at the start of 

the 2000-2005 observation period, and ��′is forest cover at site i at the end of the observation period.   
� � 1: 4 are classes of observations stratified by initial forest cover (Table SI1).  Xi is a matrix of 
observable site characteristics, including slope, elevation, natural logarithm of the distance to the nearest 
road, natural logarithm of the distance to the nearest provincial capital, and the percent of site within a 
national park, other protected area, logging concession (HPH), timber concession (HTI), or estate crop 
concession (kebun).  �� is the net present value of gross agricultural revenue potential per hectare at site i. 
The term 	
� captures unobserved constant components of the expected net benefits of deforestation. 

 

Eq. 2 – Predicted probability of deforestation at sites in the absence of REDD+ 

������� �!� "#$$% � exp �	&
� � �′	&
� � 	&
���� 
Here ������� �!� "#$$% is the expected probability of deforestation at site i in the absence of REDD+.  The 
distribution across the country of all ������� �!� "#$$% is the reference scenario. 

 

Eq. 3 – Effective land rental value at a site 

�� � 	&
� � �′	&
�
	&
�

 

Effective land rental value at a site includes not only potential gross agricultural revenue but also costs. 

 

Eq. 4 – Probability of deforestation at a site in a district that opts in to REDD+ 

�������  "#$$%; �(� �) � exp �	&
� � �′	&
� � 	&
���1 � *� � *���� � +��� 

Here *� is the endogenous increase in price due to intranational leakage, and *� is the exogenous increase 
in price due to international leakage.  +� is the marginal carbon revenue per hectare of forest accruing to a 
district that has opted in to REDD+. 

 

Eq. 5 – Carbon revenue per hectare of forest accruing to a district which has opted in to REDD+ 
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+� � ,- . �1 � /� . 0� 

Here  ,1 is the price paid by international buyers for carbon emission reductions, / � 20,15 is the portion 
of world carbon price withheld by the national government under a revenue sharing arrangement (e.g. r=0 
world signify that carbon price accrues entirely to the district), and 0� is the emission reductions resulting 
from a decrease in deforestation at parcel i (tCO2e/ha).   

 

Eq. 6 – Probability of deforestation at a sites in a district that opts in to REDD+ 

�������  "#$$%; �(� �!� � exp �	&
� � � ′	&
� � 	&
���1 � *� � *���� � 6��� 

Here 6� is the marginal cost per hectare of deforestation incurred by a district which has opted out of 
REDD+. 

 

Eq. 7 – Cost per hectare of deforestation incurred by a district which has opted out of REDD+ 

6� � ,- . �1 � 7� . 0� 

Here 7 � 20,15  is the share of cost for emission increases borne by the national government under a 
responsibility-sharing arrangement (e.g. l=1 would signify that cost is borne entirely by the national 
government). 

 

Eq. 8 – Districts’ participation decision 

,- . �1 � /�2+89 � ∑ ��������  "#$$%; �(� �) . ��� . 0��5�;9 > 

 <2∑ ��������  "#$$%; �(� �!��;9 � �������  "#$$%; �(� �)� . ��� . �1 � *� � *�� . ��5 

– ,- . �1 � 7� . >��������  "#$$%; �(� �!� . ��� . 0� � +89�
�;9

 

Here +89 is the reference level for district j, and ��� is the starting forest cover at site i.  Parameter < 

represents the district’s preference for agricultural revenue relative to carbon revenue.   

 

Eq. 9 – Expected aggregate deforestation within a district, without REDD+ 

?9,��� �!� "#$$% � >�������� �!� "#$$% . ����
��9
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Eq. 10 – Expected aggregate deforestation within a district, with REDD+ 

?9,���  "#$$% � >��������  "#$$% . ����
��9

 

 

Eq. 11 – Expected aggregate emissions within a district, without REDD+ 

09,��� �!� "#$$% � >�������� �!� "#$$% . ���
��9

. 0�� 

 

Eq. 12 – Expected aggregate emissions within a district, with REDD+ 

09,���  "#$$% � ∑ ��������  "#$$% . �����9 . 0��. 
 

 

Eq. 13 – Expected carbon revenue accruing to district from opting in to REDD+ 

@9 � max C0, D+89 � 09,���  "#$$%E . ,1 . �1 � /�F. 
 

 

Eq. 14 – Expected cost incurred by a district from opting out of REDD+ 

69 � maxG0, �09,��� �!� "#$$% � +89� . ,1 . �1 � 7�H 
 

 

Eq. 15 – Expected aggregate deforestation nationwide, without REDD+ 

?��� �!� "#$$% � > ?9,��� �!� "#$$%
9

 

 

 

Eq. 16 – Expected aggregate deforestation nationwide, with REDD+ 
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?���  "#$$% � > ?9,���  "#$$%
9

 

 

 

Eq. 17 – Endogenous increase in potential agricultural revenue due to decreased aggregate deforestation 
nationwide 

*� � �?��� �!� "#$$%
?���  "#$$%

�I 

The “effective elasticity” parameter e is functionally equivalent to the price elasticity of demand for 
frontier agriculture, but is assumed to also incorporate feedback in the domestic labor and productive 
capital markets. 
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