162 research outputs found

    Genetic diversity of the 2013–14 human isolates of influenza H7N9 in China

    Get PDF
    published_or_final_versio

    The mechanisms of Yu Ping Feng San in tracking the cisplatin-resistance by regulating ATP-binding cassette transporter and glutathione S-transferase in lung cancer cells

    Get PDF
    Cisplatin is one of the first line anti-cancer drugs prescribed for treatment of solid tumors; however, the chemotherapeutic drug resistance is still a major obstacle of cisplatin in treating cancers. Yu Ping Feng San (YPFS), a well-known ancient Chinese herbal combination formula consisting of Astragali Radix, Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix, is prescribed as a herbal decoction to treat immune disorders in clinic. To understand the fast-onset action of YPFS as an anti-cancer drug to fight against the drug resistance of cisplatin, we provided detailed analyses of intracellular cisplatin accumulation, cell viability, and expressions and activities of ATP-binding cassette transporters and glutathione S-transferases (GSTs) in YPFS-treated lung cancer cell lines. In cultured A549 or its cisplatin-resistance A549/DDP cells, application of YPFS increased accumulation of intracellular cisplatin, resulting in lower cell viability. In parallel, the activities and expressions of ATP-binding cassette transporters and GSTs were down-regulated in the presence of YPFS. The expression of p65 subunit of NF-κB complex was reduced by treating the cultures with YPFS, leading to a high ratio of Bax/Bcl-2, i.e. increasing the rate of cell death. Prim-O-glucosylcimifugin, one of the abundant ingredients in YPFS, modulated the activity of GSTs, and then elevated cisplatin accumulation, resulting in increased cell apoptosis. The present result supports the notion of YPFS in reversing drug resistance of cisplatin in lung cancer cells by elevating of intracellular cisplatin, and the underlying mechanism may be down regulating the activities and expressions of ATP-binding cassette transporters and GSTs

    PARP-1 Val762Ala Polymorphism Is Associated with Risk of Cervical Carcinoma

    Get PDF
    PARP-1 is a nuclear enzyme that plays an important role in DNA repair, recombination, proliferation and the genome stability. The PARP-1 Val762Ala polymorphism has been associated with increased risk of developing cancers of the prostate, esophagus and lung. The aim of this study was to determine whether the PARP-1 Val762Ala polymorphism is associated with the risk of cervical carcinoma. MA-PCR was used to genotype the PARP-1 Val762Ala polymorphism in 539 women with cervical carcinoma, 480 women with CIN and 800 controls. The genotyping method was confirmed by the DNA sequencing analysis. The PARP-1 Val762Ala polymorphism was not associated with the risk of CIN. However, women carrying the PARP-1 Ala762Ala genotype were significantly susceptible to cervical carcinoma (OR: 2.70, 95% CI: 1.47–3.70), and the similar results were also found in squamous cell carcinoma (OR: 2.56, 95% CI: 1.47–3.70). In HPV positive population, the PARP-1 Ala762Ala genotype was also associated with increased risk of cervical carcinoma (OR: 5.56, 95% CI: 2.08–14.3). Our results indicate that the PARP-1 Ala762Ala genotype increases the risk of cervical carcinoma

    GAIA: a gram-based interaction analysis tool – an approach for identifying interacting domains in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-Protein Interactions (PPIs) play important roles in many biological functions. Protein domains, which are defined as independently folding structural blocks of proteins, physically interact with each other to perform these biological functions. Therefore, the identification of Domain-Domain Interactions (DDIs) is of great biological interests because it is generally accepted that PPIs are mediated by DDIs. As a result, much effort has been put on the prediction of domain pair interactions based on computational methods. Many DDI prediction tools using PPIs network and domain evolution information have been reported. However, tools that combine the primary sequences, domain annotations, and structural annotations of proteins have not been evaluated before.</p> <p>Results</p> <p>In this study, we report a novel approach called Gram-bAsed Interaction Analysis (GAIA). GAIA extracts peptide segments that are composed of fixed length of continuous amino acids, called n-grams (where n is the number of amino acids), from the annotated domain and DDI data set in <it>Saccharomyces cerevisiae </it>(budding yeast) and identifies a list of n-grams that may contribute to DDIs and PPIs based on the frequencies of their appearance. GAIA also reports the coordinate position of gram pairs on each interacting domain pair. We demonstrate that our approach improves on other DDI prediction approaches when tested against a gold-standard data set and achieves a true positive rate of 82% and a false positive rate of 21%. We also identify a list of 4-gram pairs that are significantly over-represented in the DDI data set and may mediate PPIs.</p> <p>Conclusion</p> <p>GAIA represents a novel and reliable way to predict DDIs that mediate PPIs. Our results, which show the localizations of interacting grams/hotspots, provide testable hypotheses for experimental validation. Complemented with other prediction methods, this study will allow us to elucidate the interactome of cells.</p

    Wild Type and Mutant 2009 Pandemic Influenza A (H1N1) Viruses Cause More Severe Disease and Higher Mortality in Pregnant BALB/c Mice

    Get PDF
    BACKGROUND: Pregnant women infected by the pandemic influenza A (H1N1) 2009 virus had more severe disease and higher mortality but its pathogenesis is still unclear. PRINCIPAL FINDINGS: We showed that higher mortality, more severe pneumonitis, higher pulmonary viral load, lower peripheral blood T lymphocytes and antibody responses, higher levels of proinflammatory cytokines and chemokines, and worse fetal development occurred in pregnant mice than non-pregnant controls infected by either wild type (clinical isolate) or mouse-adapted mutant virus with D222G substitution in hemagglutinin. These disease-associated changes and the lower respiratory tract involvement were worse in pregnant mice challenged by mutant virus. Though human placental origin JEG-3 cell line could be infected and proinflammatory cytokines or chemokines were elevated in amniotic fluid of some mice, no placental or fetal involvement by virus were detected by culture, real-time reverse transcription polymerase chain reaction or histopathological changes. Dual immunofluorescent staining of viral nucleoprotein and type II alveolar cell marker SP-C protein suggested that the majority of infected alveolar epithelial cells were type II pneumocytes. CONCLUSION: The adverse effect of this pandemic virus on maternal and fetal outcome is largely related to the severe pulmonary disease and the indirect effect of inflammatory cytokine spillover into the systemic circulation

    Recruitment of a SAP18-HDAC1 Complex into HIV-1 Virions and Its Requirement for Viral Replication

    Get PDF
    HIV-1 integrase (IN) is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other retroviral) virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found that SAP18 (Sin3a associated protein 18 kD), a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1) virions in an HIV-1 IN–dependent manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV) virion preparations harbour significant deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1 (HDAC1H141A) was utilized. Incorporation of HDAC1H141A decreased the virion-associated histone deacetylase activity. Furthermore, incorporation of HDAC1H141A decreased the infectivity of HIV-1 (but not SIV) virions. The block in infectivity due to virion-associated HDAC1H141A occurred specifically at the early reverse transcription stage, while entry of the virions was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated HDAC1 is required for efficient early post-entry events, indicating a novel role for HDAC1 during HIV-1 replication

    Synergistic study of a Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) combination on cell survival in EA.hy926 cells

    Get PDF
    Background: This study investigated the protective effects of the Danshen (DS) and Sanqi (SQ) herb pair on cell survival in the human cardiovascular endothelial (EA.hy926) cell line exposed to injury. Methods: Nine combination ratios of Danshen-Sanqi extracts (DS-SQ) were screened for their protective effects in the EA.hy926 cell line against two different cellular impairments induced by DL-homocysteine (Hcy) – adenosine (Ado) – tumour necrosis factors (TNF) and oxidative stress (H2O2), respectively. The type of interaction (synergistic, antagonistic, additive) between DS and SQ was analysed using a combination index (CI) model. The effects of key bioactive compounds from DS and SQ were tested using the same models. The compound from each herb that demonstrated the most potent activity in cell viability was combined to evaluate their synergistic/antagonistic interaction using CI. Results: DS-SQ ratios of 6:4 (50–300 μg/mL) produced synergistic effects (CI < 1) in restoring cell viability, reducing lactate dehydrogenase (LDH) leakage and caspase-3 expressions against Hcy-Ado-TNF. Additionally, DS-SQ 6:4 (50–150 μg/mL) was found to synergistically protect endothelial cells from impaired cellular injury induced by oxidative damage (H2O2) by restoring reduced cell viability and inhibiting excessive expression of reactive oxygen species (ROS). In particular, the combination of salvianolic acid A (SA) and ginsenoside Rb1 (Rb1) at 4:6 (1–150 μM) showed synergistic effects in preventing cytotoxic effects caused by Hcy-Ado-TNF (CI < 1). This simplified combination also demonstrated synergistic effects on H2O2-induced oxidative damage on EA.hy926 cells. Conclusions: This study provides scientific evidence to support the traditional use of the DS-SQ combination on protecting endothelial cells through their synergistic interactions
    • …
    corecore