1,670 research outputs found

    The Muon Anomalous Magnetic Moment in the Reduced Minimal 3-3-1 Model

    Get PDF
    We study the muon anomalous magnetic moment (g2)μ(g-2)_{\mu} in the context of the reduced minimal 3-3-1 model recently proposed in the literature. In particular, its spectrum contains a doubly charged scalar (H±±H^{\pm \pm}) and gauge boson (U±±U^{\pm \pm}), new singly charged vectors (V±V^{\pm}) and a ZZ^{\prime} boson, each of which might give a sizeable contribution to the (g2)μ(g-2)_{\mu}. We compute the 1-loop contributions from all these new particles to the (g2)μ(g-2)_{\mu}. We conclude that the doubly charged vector boson provides the dominant contribution, and by comparing our results with the experimental constraints we derive an expected value for the scale of SU(3)LU(1)NSU(3)_L\otimes U(1)_N symmetry breaking vχ2v_{\chi} \sim 2 TeV. We also note that, if the discrepancy in the anomalous moment is resolved in the future without this model then the constraints will tighten to requiring vχ>2.7v_\chi > 2.7 TeV with current precision, and will entirely rule out the model if the expected precision is achieved by the future experiment at Fermilab.Comment: 19 pages, 4 figure

    Quantum noise induced entanglement and chaos in the dissipative quantum model of brain

    Full text link
    We discuss some features of the dissipative quantum model of brain in the frame of the formalism of quantum dissipation. Such a formalism is based on the doubling of the system degrees of freedom. We show that the doubled modes account for the quantum noise in the fluctuating random force in the system-environment coupling. Remarkably, such a noise manifests itself through the coherent structure of the system ground state. The entanglement of the system modes with the doubled modes is shown to be permanent in the infinite volume limit. In such a limit the trajectories in the memory space are classical chaotic trajectories.Comment: 14 page

    Flow in left atrium using MR fluid motion estimation

    Get PDF
    Copyright 2007 Society of Photo-Optical Instrumentation Engineers. This paper was published in Complex Systems II, edited by Derek Abbott, Tomaso Aste, Murray Batchelor, Robert Dewar, Tiziana Di Matteo, Tony Guttmann, Proc. of SPIE Vol. 6802, 68021H and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.A recent development based on optical flow applied onto Fast Imaging in Steady State Free Precession (TrueFISP) magnetic resonance imaging is able to deliver good estimation of the flow profile in the human heart chamber. The examination of cardiac flow based on tracking of MR signals emitted by moving blood is able to give medical doctors insight into the flow patterns within the human heart using standard MRI procedure without specifically subjecting the patient to longer scan times using more dedicated scan protocols such as phase contrast MRI. Although MR fluid motion estimation has its limitations in terms of accurate flow mapping, the use of a comparatively quick scan procedure and computational post-processing gives satisfactory flow quantification and can assist in management of cardiac patients. In this study, we present flow in the left atria of five human subjects using MR fluid motion tracking. The measured flow shows that vortices exist within the atrium of heart. Although the scan is two-dimensional, we have produced multiple slices of flow maps in a spatial direction to show that the vortex exist in a three-dimensional space.Kelvin K. L. Wong, Richard M. Kelso, Stephen M. Worthley, Prash Sanders, Jagannath Mazumdar, Derek Abbot

    Computational challenges in the analysis of ancient DNA

    Get PDF
    High-throughput sequencing technologies have opened up a new avenue for studying extinct organisms. Here we identify and quantify biases introduced by particular characteristics of ancient DNA samples. These analyses demonstrate the importance of closely related genomic sequence for correctly identifying and classifying bona fide endogenous DNA fragments. We show that more accurate genome divergence estimates from ancient DNA sequence can be attained using at least two outgroup genomes and appropriate filtering

    An instance of cavity resonance interaction with an open-jet tunnel free shear layer

    Get PDF
    J Milbank, Simon Watkins & RM Kels

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    A thermal test system for helmet cooling studies

    Get PDF
    Published: 13 February 2018One of the primary causes of discomfort to both irregular and elite cyclists is heat entrapment by a helmet resulting in overheating and excessive sweating of the head. To accurately assess the cooling effectiveness of bicycle helmets, a heated plastic thermal headform has been developed. The construction consists of a 3D-printed headform of low thermal conductivity with an internal layer of high thermal mass that is heated to a constant uniform temperature by an electrical heating element. Testing is conducted in a wind tunnel where the heater power remains constant and the resulting surface temperature distribution is directly measured by 36 K-type thermocouples embedded within the surface of the head in conjunction with a thermal imaging camera. Using this new test system, four bicycle helmets were studied in order to measure their cooling abilities and to identify ‘hot spots’ where cooling performance is poor.Shaun Fitzgerald, Henry Atkins, Ryan Leknys and Richard Kels

    Cephalosporin-3’-diazeniumdiolate NO-donor prodrug PYRRO-C3D enhances azithromycin susceptibility of non-typeable Haemophilus influenzae biofilms

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Objectives: PYRRO-C3D is a cephalosporin-3-diazeniumdiolate nitric oxide (NO)-donor prodrug designed to selectively deliver NO to bacterial infection sites. The objective of this study was to assess the activity of PYRRO-C3D against non-typeable Haemophilus influenzae (NTHi) biofilms and examine the role of NO in reducing biofilm-associated antibiotic tolerance. Methods: The activity of PYRRO-C3D on in vitro NTHi biofilms was assessed through CFU enumeration and confocal microscopy. NO release measurements were performed using an ISO-NO probe. NTHi biofilms grown on primary ciliated respiratory epithelia at an air-liquid interface were used to investigate the effects of PYRRO-C3D in the presence of host tissue. Label-free LC/MS proteomic analyses were performed to identify differentially expressed proteins following NO treatment. Results: PYRRO-C3D specifically released NO in the presence of NTHi, while no evidence of spontaneous NO release was observed when the compound was exposed to primary epithelial cells. NTHi lacking β-lactamase activity failed to trigger NO release. Treatment significantly increased the susceptibility of in vitro NTHi biofilms to azithromycin, causing a log-fold reduction in viability (p<0.05) relative to azithromycin alone. The response was more pronounced for biofilms grown on primary respiratory epithelia, where a 2-log reduction was observed (p<0.01). Label-free proteomics showed that NO increased expression of sixteen proteins involved in metabolic and transcriptional/translational functions. Conclusions: NO release from PYRRO-C3D enhances the efficacy of azithromycin against NTHi biofilms, putatively via modulation of NTHi metabolic activity. Adjunctive therapy with NO mediated through PYRRO-C3D represents a promising approach for reducing biofilm associated antibiotic tolerance
    corecore