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Breaking the Reflectional Symmetry 
of Interlimb Coordination Dynamics 

Polemnia G. Amazeen 
Eric L. Amazeen 
Faculty of Human Movement Sciences 
Vrije Universiteit, Amsterdam 
Center for the Ecological Study 

of Perception and Action 
University of Connecticut, Storrs 

ABSTRACT. lnterlimb rhythmic coordination is reflectionally 
symmriric when the left and right limb segments are identical in 
uncoupled frequencies and spatial orientation. In the present stud- 
ies (4  cxperiments, with a total of 31 participants), when reflec- 
tional symmetry was broken through differences in timing (fre- 
quenq ), the resulting stable states were related by reflection and 
werc itlentical for paired identically oriented limb segments 
behavirig either as inverted or as ordinary pendulums. When 
reflectional symmetry was broken both temporally and spatially 
(coordinating inverted and ordinary pendular motions), the result- 
ing stable states were different from those produced by identically 
orienleil pendulums but nevertheless were related by reflection. In 
the Dihcussion, the authors focus on (a) symmetry breaking as 
leadinr to one of a number of symmetrically related states and (b) 
extending coordination dynamics with reflectional symmetry so 
that tertiporal and spatial asymmetries can both be accommodated. 

Key w r d s :  dynamics, group theory, interlimb coordination, 
inverted pendulum, symmetry 

common but nonetheless remarkable feature of the A human movement system is its ability to synchronize 
the rhvthmic motions of any one body segment with any 
other. For example, pianists are adept at coordinating the 
moveiiients of' their fingers upon a keyboard but may also 
incorptxate in their overall body motion a tapping foot, a 
noddirig head, and a swaying torso. Of significance to the 
prewrl t article is the observation that coordination occurs 
quite casily despite differences in the sizes and orientations 
of thr body segments; in fact, coordination is more likely to 
be her ween dissimilar body segments, whether by design 
(e.g., <rn arm and a leg) or by occasion (e.g., two arms, one 

M. T. Turvey 
Center for the Ecological Study 

of Perception and Action 
University of Connecticut, Storrs 
Haskins Laboratories, New Haven 

of which is weighted by a bag). In research on two-limb 1 : 1 
frequency-locked coordinations, the focus has been pre- 
dominantly the impact of differently sized body segments 
on the resulting coordination (see summaries in Amazeen, 
Amazeen, & Turvey, in press; Kelso, 1994a; Schmidt & 
Turvey, 1995; Turvey, 1994). Our focus in the present arti- 
cle is on incorporating the influence of differently oriented 
body segments through the use of mathematical (symmetry) 
group theory for 1 : 1 frequency-locked coordinations.' 

In Figure la, a prototypical synchronization is depicted, 
namely, the synchronization of the upper limbs that occurs 
during walking. Notice that the left and right arms are iden- 
tical to each other both in size and in orientation. The limbs 
are reflectionally symmetric; that is, a reflectional transfor- 
mation or exchange of the left and right limbs-as if the 
individual were viewed either from behind or in a mirror- 
leaves the appearance of that two-limb system, for our pur- 
poses (i.e., overlooking the orientation of the palms and the 
position of the individual fingers), unchanged. Physically 
identical arms prefer the same frequency of movement and 
therefore contribute equally to the coordination during the 
basic rhythmic act of walking. Two prototypical patterns 
that are observed for two-limb monofrequency ( 1  : 1 fre- 
quency-locked) coordination are in-phase, in which the 

Correspondence address: J? G. Amazeen, Faculty oj Hirman 
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1 ON1 BT Amsterdam, the Netherlands. E-mail address: 
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FIGURE 1. Reflectional symmetry is preserved when the 
limbs o r  limb segments of a coordination are physically 
identical and identically oriented, such as two arms either 
(a) oriented in the direction of gravity or (b) raised. When- 
ever reflectional symmetry is preserved, symmetric solu- 
tions (that is, perfect in-phase 0 and perfect antiphase n) 
should be produced. That hypothesis was tested in Experi- 
ments 1 and 2. Reflectional symmetry is broken when the 
limb segments are physically (and, therefore, temporally) 
different (Am # O), as in the coordination of an arm and a 
finearm that are either (c) oriented in the direction of grav- 
ity or (d) raised. (e) Kugler and Turvey’s (1987) system of 
hand-held pendulums can be used to control the differential 
loading on the limbs so that one can experimentally model 
( a )  and (c ) .  (f) When inverted, the hand-held pendulums are 
experimental models of (b) and (d). The solutions produced 
by those two systems, in which Am # 0, were compared in 
Experiment 2. 

limb segments are always at the same position in theii 
movement cycles, and antiphase, in which the two limbs are 
always exactly opposite to each other in their movement 
cycles (e.g., Collins & Stewart, 1993a, 1993b; Kelso, 1984). 
When the two-limb system is set into motion, its behavior 
remains categorically unchanged by a reflectional transfor- 
mation; that is, in-phase remains in-phase and antiphase 
remains antiphase.* Therefore, both in appearance and in 
behavior, the two-limb system of Figure la  belongs to the 
reflectional symmetry group. 

A two-limb system in which the two arms are oriented 
upward is depicted in Figure lb. Although the two arms are 
oriented differently than the arms in Figure la, the systems 
depicted in Figures la and lb both remain unchanged 
across a reflectional transformation. Therefore, both two- 
limb systems are reflectionally symmetric. In the majority 
of research on rhythmic coordination in two-limb systems. 
the focus has been the behavior of either downward-orient 
ed limb segments (depicted in Figure la) or horizontiilly 
oriented limb segments (e.g., Byblow, Carson, & Goodman. 
1994; Lee, Swinnen, & Vershueren, 1995; Wuyts, Sum- 
mers, Carson, Byblow, & Semjen, 1996). Neverthelesb, if 
the underlying principle guiding the coordination is sym- 
metry group membership, the findings should hold for the 
upward-oriented (that is, inverted) limb segments of Figure 
1 b as well. At issue is the phenomenon of motor equiva- 
lence, that is, the ability of two seemingly different motor 
systems to behave the same functionally. To the extent lhar 
different two-limb configurations are symmetrically equiv- 
alent, they should produce the same solution. 

The reflectional symmetry of Figures la and lb is easily 
broken, as depicted in Figures l c  and Id. Restricting the 
oscillations of one arm to rotation about the elbow changes 
the size of the limb segment and, therefore, its preferred fre- 
quency of movement (Kugler & Turvey, 1987). The coupled 
full arm-forearm system is no longer reflectionally sym- 
metric, because dissimilar limb segments cannot be inter- 
changed without changing the physical and behavioral char- 
acteristics of the system. The importance of group theory 
lies in the way in which seemingly different objects and 
events are shown to relate to each other, that is, are shown 
to belong to the same symmetry group. That finding is best 
summarized in the Extended Curie Principle, as expressed 
by Stewart and Golubitsky ( 1992): “physically realizable 
states of a symmetric system come in bunches, related to 
each other by a symmetry” (p. 58).? To put that statement in 
the context of interlimb coordinations, let us consider any 
two-limb coordination (i.e., categorically, reflectionillly 
symmetric, as in Figures la  and lb, or reflectionally asym- 
metric, as in Figures l c  and Id). For the purposes of argu- 
ment, apply the transformation that defines the symmetry 
group-reflection-by looking at the same two-limb coor- 
dination from behind. The Extended Curie Principle states 
that the first configuration (frontal view) will appear either 
identical to or as a perfect mirror image of the second con- 
figuration (rear view). The argument from group theory is 
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Broken Symmetries in Interlimb Coordination 

that the same rule should hold behaviorally. Rephrasing the 
Extended Curie Pnnciple: Symmetry is never lost, but 
redistributed (Stewart & Golubitsky, 1992); with reflection- 
ally abymmetric configurations, such as in Figures l c  and 
Id, reflectional symmetry is shared between two different 
state5 of the same system. 

Coordination Dynamics 
With the principles of group theory in mind, let us now 

consider in more detail the predictions that may be made. 
Monofrequency (1 : 1 frequency-locked) coordinations are 
acconimodated by the following motion equation, written 
over the order parameter relative phase: 4 = - Onght, 
where 8 is the phase angle of the individual oscillator 
(Haken, Kelso, BL Bunz, 1985; Kelso, Delcolle, & Schoner, 
1990: Schoner, Haken, & Kelso, 1986): 

4 - A m - c i  sin@-2b s i n 2 @ + d z .  ( 1 )  

Reflecitional asymmetry is captured by the parameter Am 
(= y,,~, - 4 , g h l .  where w is the preferred movement frequen- 
cy of [he individual oscillator), and the coefficients a and b 
are thc strength of the coupling between the limbs. The last 
right-hand term is a Gaussian white noise term of strength Q 
that arises from the interactions of the very many (neural, 
muwdar, and vascular) subsystems. Equation 1 is reflection- 
ally synmetric when there are no timing differences between 
the linrhs (Am = 0); that condition has been referred to as the 
elerrit,rrtrrry coordination dynamics (Kelso, 1994a). 

Predictions regarding the location and relative stability of 
the stltible phase relations, or fixed points, of Equation 1 are 
presen,ted in Figure 2. In the laboratory, the location of the 
fixed points is indexed as the deviation or shift of mean rel- 
ative phase @aye from an intended phase @,,,of either 0 or n 
(Fipurct la) ,  and their stability is inversely related to the 
variability with which @a,,, is produced, as indexed by the 
standa'rd deviation of relative phase SO@ (Figure 2b). 
Although the principles of group theory apply to patterns of 
both tixed point shift and variability, presentation of the for- 
mer scrves to illustrate. The predictions of both Figures 2a 
and 2tr are presented more fully when they are tested in 
Experment 2. 

As noted, according to the Extended Curie Principle, 
whenever symmetry is broken, it is not lost entirely but, 
rather, is redistributed or shared among multiple system 
states c~Stewart & Golubitsky, 1992). The manner of redistri- 
butimon is such that those states will be related to each other 
via th$ transformation that defines the symmetry group. 
When Am = 0, the two-limb system is reflectionally sym- 
metric When reflectional symmetry is broken (as in the 
mental exercise presented earlier), that is, Am # 0, there are 
two rel,ated states, say, (a) Am = -d and (b) Am = +d rad s-l. 
In words, they can be described as (a) left is x larger than 
right arid (b) right is x larger than left, where x is some size 
difference that causes the difference d in preferred frequen- 
cies 01' the two limbs. Individually, those systems do not 

-0.4 
-1.55 0 1 5 5  

0,4[ b 
I 

, I ~ 0.1 
q1.55 0 1.55 

AU ( rad*s- ' )  

FIGURE 2. Predictions from Equation 1 of (a) fixed point 
shift and (b) variability, as a function of frequency compe- 
tition, Am, for an intended phase, &, of both 0 and rc. Fixed 
point shift was measured as the deviation of average rela- 
tive phase, &,, from intended phase. Variability was mea- 
sured as the standard deviation of relative phase, SO@. Cou- 
pling strength was held constant (blu = I )  for all 
predictions. 

remain invariant under a reflectional transformation, but 
together they are related to each other via reflection; that is, 
when (a) left is x larger than right is left-right reflected, it 
turns into (b) right is x larger than left. Mathematically, the 
reflection can be represented as multiplication by - I ;  the 
present example is an instance of reflectional symmetry 
sharing because -](a) = (b). Reflectional symmetry is not 
lost when Am # 0 but is shared between the two states of the 
system, (a) Am = -d and (b) Am = +d. 

The significance of that observation lies not in identify- 
ing the symmetry status of the coordination condition but, 
more importantly, in predicting the symmetry of the coordi- 
native solution. Reflectionally symmetric (Am = 0) limbs 
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produce reflectionally symmetric solutions = 0, &,,, = 
n). Conversely, reflectionally asymmetric limbs produce 
reflectionally asymmetric solutions (&,,, - @,,, f 0). For a 
given value of Am# 0, &,,, is displaced a given amount, say, 
f rad, from perfect in-phase and perfect antiphase. That is, 
when (a) Am= -d, @,,,, - $,,,= -f, and when (b) Am= +d, qaVe 
- &, = +f(see Figure 2a). Both the coordination conditions 
and their solutions are related to each other by reflection, 
that is, -I(a) = (b). The pattern of fixed point shift is quali- 
tatively the same for in-phase and antiphase, although it is 
amplified at antiphase. Although fixed point shift has been 
discussed repeatedly in the literature, it has not, thus far, 
been addressed in terms of group theory. A major promise 
of the group theoretic perspective is that it may provide a 
tool for understanding how an organism demonstrates gen- 
erativity, that is, the ability to produce a skill in novel cir- 
cumstanccs (see Fodor, 1975, and Fodor & Pylyshyn, 1988, 
for development of this term in the field of language); any 
organism that is capable of producing one asymmetric state 
of coordination may have at its disposal the ability to 
demonstrate transfer-without prior experience-to the 
other related, or “shared,” states as well. The most straight- 
forward illustration of that is the ability of a learner to 
acquire the n/2 phase relation and to demonstrate, without 
additional practice, 4 2  (e.g., Zanone & Kelso, 1992). 
Although both n/2 and 4 2  may be produced with sym- 
metric limb segments, their relation to each other holds in 
the form of the Extended Curie Principle. 

Support for the predictions in Figure 2 has been well doc- 
umented in the literature for downward-oriented limbs (e.g., 
Figure lc) whose preferred frequencies researchers have 
manipulated by varying the physical characteristics of 
hand-held pendulums (see Figure le  and Amazeen, Sternad, 
& Turvey, 1996; Kugler & Turvey, 1987; Schmidt, Shaw, & 
Turvey, 1993; Sternad, Amazeen, & Turvey, 1996). If Equa- 
tion l is a generalized form of the coordination dynamics 
for any two-limb system belonging to the reflectional sym- 
metry group, then it should apply equally to inverted sys- 
tems in  which reflectional symmetry has been broken 
through an asymmetry in timing of the limbs (e.g., Figure 
1 d); we tested that theory empirically with inverted pendu- 
lums (e.g., Figure If) in Experiment 2. 

Breaking Reflectional Symmetry Through 
Differences in Spatial Orientation 

Researchers have broken reflectional symmetry by 
imposing differences in the timing of the coordination com- 
ponents in experiments in which Am has been manipulated, 
although those experiments have not been labeled as such. 
There are considerably fewer studies of reflectional sym- 
metry breaking through the imposition of differences in the 
spatial orientation of the coordination components (e.g., 
Jeka & Kelso, 1995; Kelso, Buchanan, & Wallace, 1991; 
Kelso & Jeka, 1992). In Figures 3a and 3b, instances of 
coordination between one inverted limb and one downward- 
oriented limb (in its ordinary position) are depicted. Viewed 

simply as a geometric arrangement, Figures 3a and 3b are 
both reflectionally asymmetric, because they are changed 
by a reflection transformation. However, because reflection 
transforms Figure 3a into Figure 3b, and vice versa, they are 
related states. The symmetry that is broken when the two 
limbs are oriented differently is redistributed among those 
two configurations. 

One can use group theory to predict that the solution pro- 
duced by Figure 3a should be reflectionally related to the 
solution produced by Figure 3b. For example, if Figure 3a 
produces q&,,, - $,,, = -f, then Figure 3b should produce 4dve 
- qb,,, = +f. In its current form, Equation 1 has no means for 
accommodating spatial symmetry breaking. Therefore, i t  
offers the alternate prediction that two limbs that are equiv- 
alent in terms of their preferred timing (Am = 0) should pro- 
duce perfect in-phase and antiphase (&, - & = 0). We test- 
ed those predictions in Experiments 3 and 4. 

Breaking Reflectional Symmetry Through 
Differences in Both Timing and Spatial Orientation 

Reflectional symmetry is broken through differences in 
either timing or spatial orientation, but it is also broken 
when the limbs being coordinated are different in both tim- 

ing and orientation. A coordination in which the limb seg- 
ments (experimentally controlled by hand-held pendulums) 
being coordinated are of different sizes (Am < 0) and differ- 
ent spatial orientations is depicted in Figure 3c. The system 
is clearly reflectionally asymmetric, because reflection 
drastically alters its physical appearance. That fact alone 
allows for the prediction from group theory that, behav. 
iorally, the system will not produce perfect in-phase 01 

antiphase coordinations (i.e., qaV, - 9, f 0). Currently, there 
is no basis for predicting whether the deviation of from 
0 and K produced by differences in limb orientation alone 
will be greater or less than the deviation produced by dif- 
ferences in both timing and limb orientation. 

The limb configuration that is, by group theory, the 
reflectional partner of the configuration in Figure 3c i\ 
shown in Figure 3d. Left-right exchange of the coordina- 
tion components in Figure 3c yields the configuration 
depicted in Figure 3d, and vice versa. For contrast, note thac 
the configuration depicted in Figure 3e is identical to the 
one in Figure 3c in terms of its timing differences (Am= -d) 
but is reflectionally related to neither Figure 3c nor Figurc 
3d. The resulting prediction is that behaviorally, Figures 3c 
and 3d (but not Figure 3e) should be related. Specifically, if 
Figure 3c produces &,,,, - 4, = -f, then Figure 3d should 
produce qaVe - q+, = +f. We tested that prediction in Experi 
ment 4. The alternate hypothesis comes from Equation I ’ 
Because it lacks a manner in which to specify symmetry 
breaking through differences in spatial orientation, Equa- 
tion 1 predicts that because the configurations depicted in 
Figures 3c and 3e are identical in A 4  they should producc 
the same coordinative solution. Importantly, then, the ftnd. 
ing that differences in spatial orientation alter the coordina- 
tion dynamics of Equation 1 calls for the accommodatioii 
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FIGURE 3. (a) and (b) Reflectional symmetry is broken 
whcn the limb segments are differently oriented, such as in 
thc coordination of an arm that is oriented in the direction of 
gravity with an arm that is raised. (c) to ( e )  We asked par- 
ticipants to coordinate the movements of an ordinary pen- 
dulum that was held in one hand with the movements of an 
invt:rted pendulum that was held in the other hand in order 
to L.xperimentally control differences in timing of two dif- 
tcic~ntly oriented limb segments. Any two coordinative sys- 
icni\ that are related by reflection should demonstrate solu- 
l i o i i h  that are likewise related by reflection. Therefore, it is 
cxpccted that (a) and (b) will demonstrate equal but mirror- 
iniage coordinative patterns, as will (c) and (d), but not ( c )  
;ind ( e )  or (d) and (e). The alternate hypothesis, from Equa- 
iioii l ,  is that because (c) and (e)-but not ( c )  and (d)-are 
idcdcal  in terms of their differences in timing Am, they will 
produce identical solutions. That hypothesis was tested in 
Exlleriment 4. 

by Equation 1 of additional manners of reflectional sym- 
metry breaking. 

EXPERIMENT 1 

The ratio of parameters b/u in Equation I is inversely 
related to the movement frequency of the coupled limb seg- 
ments, as claimed in the original development of the equa- 
tion (Haken et al., 1985) and shown experimentally for 
downward-oriented limb segments (e.g., Amazeen et al., 
1996; Schmidt et al., 1993). The undamped, undriven fre- 
quency (the frequency of a gravity pendulum) of any hand- 
plus-pendulum system can be calculated from the simple 
pendulum length L (dependent on both the length and mass 
of the specific pendulum); specifically, 

w = (g/L)”?, (2) 

where g is the constant acceleration caused by gravity 
(Kugler & Turvey, 1987). The output of Equation 2 is an 
estimation of the frequency of oscillation of a pendulum 
resulting from gravity alone. Practically, however, hand- 
held pendulums are both damped and driven, so additional 
forces subtract from and contribute to the pendulum’s pre- 
ferred frequency (see Beek, Schmidt, Morris, Sim, CG Tur- 
vey, 1995, for a detailed analysis of the contributing linear 
and nonlinear stiffness and friction functions). The result is 
an observed pendular frequency that is estimated by, but not 
identical to, the output of Equation 2 (see Amazeen, 
Schmidt, & Turvey, 1995, for a demonstration of individual 
differences). Theoretically, calculation of the preferred 
movement frequency of ordinary (downward-oriented) pen- 
dulums is the same for inverted (upward-oriented) pendu- 
lums (e.g.. Smith & Blackbum, 1992). We evaluated the 
validity of that claim in Experiment I by changing the phys- 
ical properties and, therefore, the movement frequencies of 
the hand-held inverted pendulums. 

The influence of movement frequency on location and 
stability of the fixed points is well documented for the 
coordination of reflectionally symmetric ordinary pendu- 
lums (e.g., Amazeen et al., 1996; Amazeen et al., 1995; 
Schmidt et al., 1993; Stemad et al., 1996; Sternad, Turvey, 
& Schmidt, 1992). When the timing of the limb segments 
is identical (Am = wlc,, - w,,gh, = 0 rad s-’), there is no shift 
of the fixed points at &,= 0 and #y= n, but the production 
of antiphase is more variable than the production of in- 
phase. In Experiment 1, that prediction was evaluated 
across a range of movement frequencies for the reflection- 
ally symmetric limb configuration depicted in Figure 1 b 
and was modeled experimentally as the synchronization of 
hand-held inverted pendulums of equal preferred move- 
ment frequencies. If the critical comparison is the reflec- 
tional symmetry similarity rather than the orientation dif- 
ference, then the results for the inverted pendulums of the 
present experiment should replicate previously obtained 
results of experiments in which ordinary pendulums were 
used. 
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Method 
Pcirticipun ts 

Five men and 2 women, all graduate students at the Uni- 
versity of Connecticut, participated in the experiment. Six 
of the 7 had previously participated in hand-held pendulum 
studies (although none had previously participated in invert- 
ed pendulum experiments), and 1 was left-handed. Data 
from both the na'ive and left-handed participants were com- 
pared with data from the remaining participants. Because 
no statistical difference was found, experience and handed- 
ness were not considered as factors in the analysis. 

Design 

The data collected in this study were the movement tra- 
jectories of the two hand-held pendulums. Measures includ- 
ed m,,,,, the frequency of oscillation averaged over the two 
pendulums; $..,,,, the relative phase (the estimate of the sta- 
ble fixed point) averaged over each trial; and SO4 (the esti- 
mate of fluctuations about the stable fixed point) per trial. 

Participants were instructed to maintain a relative phase, 
&, of either 0 (in-phase) or K (antiphase) rad. There were 
five symmetric pairs of pendulums (Am = 0 rad s-I) of vary- 
ing movement frequencies, resulting in 10 conditions (2 $v 
x 5 pendulum pairs) with two trials per condition. 

Appcirotus 

The five right hand and the five left hand pendulums were 
wooden rods (85 g, 1 m in length, 0.012 m in diameter); 
each was held in the center of the hand so that the pendu- 
lums were vertical and the hand was positioned 0.6 m from 
the top (see Figure 4). It should be noted that the extension 

FIGURE 4. Experimental arrangement for the study of 
interliinb coordination. Participants were asked to coordi- 
nate the movements of their pendulums so that an intended 
relative phase, I&,, of either 0 or n: would be obtained. Char- 
acteristics of the pendulums were vaned so that timing dif- 
ferences, Am, could be introduced. Pendulums can be 
weighted above the hand (inverted) or below the hand (ordi- 
nary); we weighted the pendulums to manipulate their spa- 
tial orientation. The participant depicted in the figure is pro- 
ducing in-phase $,,, = 0 with inverted pendulums. 

of the pendulums both below and above the hand signities a 
departure from the standard hand-held pendulums proce- 
dure (see Kugler & Turvey, 1987). Extension of the pendu- 
lum above the hand was required so that an inverted pendu- 
lum could be created. Data collection required a portion of 
the pendulum to extend below the hand, but the length and 
weight of that portion and, therefore, its impact on the pen- 
dulum's spatial orientation were minimized. Calculation of 
movement frequency using Equation 2 took those changes 
into account, but the influence of that change in method on 
obtained movement frequency and extent of coordination 
was left to empirical determination. 

A 200-g metal ring was positioned on each rod at one of' 
five positions (0.2, 0.3, 0.4, 0.5, and 0.58 m) above thc 
hand; m was greatest when the metal ring was closest to thc 
hand (0.89 Hz) and least (0.64 Hz) when the metal ring was 
farthest from the hand. More fully, the five movetnent fre- 
quencies corresponding to the five metal ring positions of 
0.2, 0.3, 0.4, 0.5, and 0.58 m above the hand were 0.89, 
0.83, 0.76, 0.69, and 0.64 Hz, respectively. On any given 
trial, the position of the metal ring was the same for both thc 
left-hand and right-hand rods so that Am = 0. 

Because the movement registration device was sonic, par- 
ticipants sat within a 1-m2-base experimental cube lined 
with foam to minimize reflections (see Figure 4). A spr- 
cially designed chair elevated their legs to allow for unob- 
structed data collection. A Sonic 3-Space Digitizer (SAC 
Corporation, Stratford, CT) collected movetnent trajecto- 
ries of each pendulum. A sonic emitter attached to the bol- 
tom of each pendulum emitted sparks at the rate of 90 Hz. 
Microphones positioned in the four corners of the experi- 
mental cube registered the position of the emitter by com- 
puting the distance of the emitter from the three of the four 
microphones that registered the least number of errors dur- 
ing that trial. Motion analysis digitizer software (MASS; 
ESI Technologies, Columbus, OH) stored the slant range 
time series for use on a 80486-based microcomputer. We 
then used MASS to calculate the mean frequency of oscil- 
lation of each of the pendulums, their primary angle of 
excursion, and 4. The three measures, ma",,,, (pave, and SD$ 
were calculated for each individual trial. Because there 
were no order effects (that is, there was no statistical differ- 
ence between measures obtained for the first and second 
repetitions of a given trial), we averaged all three measures 
across replications to obtain a single data point for each 
experimental condition. 

Procedure 

Participants held each pendulum vertically, with the cen- 
ter of the palm positioned 0.6 m from the top of each pen- 
dulum. They were instructed to position their wrists at the 
end of the armrests and to create as smooth and as coniinu- 
ous a trajectory as possible, holding the pendulum firmly i n  
the hand so that rotation about the wrist rather than rotation 
about the finger joints would be assured. Their gaze was 
focused straight ahead during the course of a trial, and, i n  
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Broken Symmetries in lnterlimb Coordination 

keeping with standard hand-held pendulums procedure 
(Trefi'ner & Turvey, 1996), they were instructed to avoid 
visuallly guiding the movements of the pendulums. Pendu- 
lar nwtion was restricted to the plane parallel to the partic- 
ipant ' 4  sagittal plane. On any given trial, participants were 
instructed that they should coordinate the hand-held pendu- 
luiiis to establish either in-phase (& = 0) or antiphase ($+, = 
x) I :  I frequency locking. They were permitted to elect a 
cornlortable frequency and to control the beginning of each 
trial. We expected that the chosen movement frequency ma,, 
woull:l vary as a function of the calculated movement fre- 
quency m. Each trial was 30 s; data collection lasted approx- 
imactily 45 min. All experimental procedures reported in the 
prcseril experiments adhered to the ethical guidelines of the 
Amelpican Psychological Association. 

Results and Discussion 

Frequency 

Wi! analyzed cycle by cycle (i.e., peak to peak) the fre- 
quewy of oscillations of the left and the right inverted pen- 
duluiris to determine whether 1:l frequency locking had 
occui'red. In all trials, the number of cycles exhibited by the 
lefr arid right pendulums either was identical or differed by 
only cme cycle. The frequency of each cycle was then cal- 
culated for left and right pendulums separately; on average, 
the difference in frequency per cycle was always less than 
.01 } i f .  The conclusion that 1: 1 frequency locking occurred 
is sip~~iiiicant for the purposes of relative phase calculations; 
it indicates that &., could be calculated straightforwardly 
for wupled inverted pendulums. A 2 x 5 analysis of van- 
ancc ( ANOVA) revealed that across the five pendulum 
pairs. q,,,,,, differed significantly, F(4, 24) = 17.05, p < 
.OOO I .  in accordance with the differences among the pairs in 
w(clja,,,,, = 0.85,0.88, 1.00, 1.08, and 1.21 Hz, from the slow- 
esi to the fastest pendulum pair). Note that participants 
electd a tnovement frequency that was slightly but consis- 
tent11 higher than the calculated value; that trend has been 
witnessed for ordinary hand-held pendulums (e.g., a:,",,, = 
1.27 ,Hz to 1.65 Hz when m = 1.13 Hz; Amazeen et al., 
1995 I and is suggested to be a function of neuromuscular 
contributions to the preferred frequency of the hand-and- 
pendulum system (Beek et al., 1995). The important finding 
is thHt extension of pendulums both above and below the 
hand ,did not influence the elected frequency of oscillation. 
RathLhr, manipulation of the pendulum's undamped, undriv- 
en movement frequency alone affected the elected frequen- 
cy of' oscillation. The implication is that one can use Equa- 
tion 2 to calculate the movement frequency for both 
ordiniiiy and inverted pendulums. 

Aluhough the frequency elected by participants was 
slightily higher for in-phase (qI,,, = 1.02 Hz) than for 
antiphase (Q,,,~ = 0.99 Hz), there was no significant differ- 
ence between the two phase relations, F( 1, 6) = 1.39, p > 
.OS. nor was there an interaction between &, and pendulum 
pair, bY4, 24) < 1. In previous research on the interlimb 

coordination of ordinary pendular motions, no difference 
has been found between in-phase and antiphase in the mag- 
nitude of the freely elected ma,,, (Sternad et al., 1996; Tur- 
vey, Rosenblum, Schmidt, & Kugler, 1986). 

Mean and Standard Deviation of Relative Phase 
An ANOVA revealed that the differences between the 

pairs of pendulums and, therefore, the differences in move- 
ment frequency, w, did not affect & - &, , F(4, 24) < 1. 
Intended phase similarly had no effect, F( I ,  6) < I ,  nor 
did it interact with the pendulum pairs, F(4, 24) = I .OO, p > 
.05. The absence of any significant effects of m on @,,, - $v 
is consistent with Equation 1 and replicates previous find- 
ings (e.g., Amazeen et al., 1996; Sternad et al., 1996). 

In general, SD$ was slightly higher than, but within the 
ballpark of, those values obtained for the coordination of 
ordinary pendulums (e.g., 0.28 rad in the present study; 
0.23 rad in Amazeen et al., 1996). That finding indicates 
that participants were able to stably produce a required 
phase relation with inverted pendulums. Both Equation 1 
and previous research on the synchronization of symmetric 
ordinary pendulums revealed that SO$ is significantly 
greater at TC than at 0 (e.g., Amazeen et al., 1995; Treffner & 
Turvey, 1996). That contrast was found in the present exper- 
iment (SD$ = 0.23 rad at & = 0; SO4 = 0.33 rad at &, = x), 
F( 1,6) = 64.03, p c .001. There was no significant effect of 
movement frequency on SD$, F(4, 24) = 2.24, p > .OS, and 
pendulum pair and qV did not interact significantly, F(4, 24) 
= 2.15, p > .05. 

In Experiment 1, we demonstrated that the same methods 
used previously to investigate synchronization of ordinary 
pendular motions can be applied to the investigation of 
inverted pendular motions. In agreement with expectation, 
we found that 1 : 1 frequency locking of inverted pcndular 
motions follows the same coordination dynamics as I : 1 fre- 
quency locking of ordinary pendular motions. In Experi- 
ment 2, the synchronizations of inverted and ordinary pen- 
dular motions were compared directly under the broken 
symmetry conditions expressed by Am # 0. 

EXPERIMENT 2 

In Figure 2 are shown the predictions from Equation 1 
regarding the stable coordinations for the broken symmetry 
conditions depicted in Figures lc and Id (and their experi- 
mental models, depicted in Figures le  and 1 f). Predictions for 
fixed point shift (Figure 2a) were outlined in the introduction. 
Patterns of variability likewise demonstrate membership in 
the reflectional symmetry group. Variability of relative phase 
(SD$ 2 0) is minimal for reflectionally symmetric systems 
(Am= 0) and increases for reflectionally asymmetric systems 
(Am # 0; see Figure 2b). In keeping with the Extended Curie 
Principle , the broken symmetry of Am = + 1.55 rad s..' leads 
to a state (e.g., SD$ = 0.35 rad for &, = x) that is reflection- 
ally related to the state resulting from the broken symmetry 
of Am = -1.55 rad s-I (SDq = 0.35 rad for &, = x); in that par- 
ticular instance, reflection requires only a sign change for 
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P. G. Amazeen, E. L. Amazeen, & M. T. Turvey 

Am, because SO@ 2 0. Although the pattern of variability is 
the same for in-phase and antiphase, SO$ is uniformly greater 
for antiphase. The implication is that two phase relations (0 
and n) can be members of the same symmetry group and yet 
be differentially stable according to the coordination dynam- 
ics (Schoner, Jiang, & Kelso, 1990). The rule that symmetry 
breaking of Equation 1 leads to one of a number of symmet- 
rically related states was expected to hold equally for the 
coordinations of coupled ordinary and coupled inverted pen- 
dular motions. We expected that a given value of Am would 
result in the same and SO@ regardless of whether ordi- 
nary or inverted pendular motions were being synchronized. 
Confirmation of those predictions will support the claim that 
the consequences of Equation 1’s symmetry are system inde- 
pendent. 

Method 
Ar rticipcin t s  

Four men and 4 women, all undergraduate students at the 
University of Connecticut, participated in the experiment in 
exchange for credit toward their introductory psychology 
course. One of the 8 participants was left-handed, but no 
difference between her performance and that of the right- 
handed participants was observed. None of the participants 
had previously participated in hand-held pendulum tasks. 

Design 

Participants were instructed to maintain &, = 0 or &, = n 
with pendulums that were either both inverted (metal ring 
above the hand) or both ordinary (metal ring below the 
hand). We manipulated (in a manner similar to Experiment 
1 ) positions of the metal rings to produce one zero and two 
nonzero values of Ao = q,, - wight. Accordingly, partici- 
pants were run under 12 conditions (2 orientations x 2 & x 
3 Am), with two trials per condition. 

Appamtus 

Pendulums were assembled from the same wooden rods 
and 200-g metal rings used in Experiment 1. There were 
three pendulum pairs, distinguished by the value of Am. 
Those were Am = 0 when the metal rings on both pendu- 
lums were positioned 0.5 m from the hand and Am = f l .55 
when the metal rings were positioned 0.20 m from the hand 
for one pendulum and 0.58 m from the hand for the other 
pendulum. In the latter case, Am was negative when the pen- 
dulum with the metal ring at 0.20 m was held in the right 
hand and positive when it was held in the left hand. 

A simple pendulum length L can be calculated for any 
coupled system of two hand-held pendulums (see Kugler & 
Turvey, 1987). Equation 2 was used so that the undamped, 
undriven movement frequency of the two-pendulum system 
could be determined. That frequency, referred to as the vir- 
tual frequency a, is the undamped, undriven frequency a 
pair of pendulums would exhibit if the pendulums were 
rigidly coupled so that a perfect in-phase or perfect 
antiphase relation was maintained at each point in their 

individual cycles (see Sternad et al., 1996, for details). To 
reiterate an earlier point, although hand-held pendulums are 
both damped and driven, Equation 2 provides an estimation 
of the preferred movement frequency. The metal rings were 
positioned so that the same virtual frequency was obtained 
for all three pairs of pendulums: 4 = 0.69 Hz. An electron- 
ic metronome paced the pendulums at 0.69 Hz so that the 
same frequency would be produced for all three pairs of 
pendulums. Data collection for Experiment 2 was identical 
to that used in Experiment 1. 

Procedure 

Participants held the pendulums vertically (see Figure 4). 
The center of the palm of each hand was positioned either 
0.6 m from the top of each pendulum, with the metal rings 
located above both hands (inverted pendulums), or 0.6 t i 1  

from the bottom of each pendulum, with the metal ringh 
located below both hands (ordinary pendulums). We manip 
ulated orientation in blocks of six trials in order to mininiizc 
the number of pendulum exchanges during the course of the 
experiment. Participants were instructed to coordinate thr 
end point of the pendular movement with the beep of thc 
metronome. Instructions to participants were otherwise 
identical to those used in Experiment 1. Data collection 
lasted approximately 35 min. 

Results and Discussion 
Frequency 

A cycle-by-cycle comparison of the frequency of oscil la- 
tions of the left and right pendulums indicated that thc 
required 1:l frequency locking was achieved. Because thc 
same frequency was required for all pendulum conditions, 
an assessment of the effect of orientation on obtained move- 
ment frequency was not possible. 

Phase Portraits 
The regularity of both (a) an inverted and (b) an ordinary 

pendulum in the context of their normalized phase portraits 
are shown in Figure 5. Note that the phase plane orbit for 
the inverted pendulum is larger than the orbit for the ordi- 
nary pendulum and slightly off-centered (-0.40 rad). Thai 
indicates that the inverted pendular motion was quite large 
and centered slightly off of the vertical. Despite those dif- 
ferences, the phase plane orbits for inverted and ordinary 
pendulums were qualitatively similar in terms of their vari- 
ability and the degree to which they were circular, or har- 
monic. The implication is that relative phase may be com- 
puted in the same manner for systems of coupled ordinary 
pendulums, systems of coupled inverted pendulums, and 
systems in which an inverted pendulum is coupled with an 
ordinary pendulum (Experiments 3 and 4). 

Mean Relative Phase 
In Figure 6, cave - &,for the Orientation x q!+, x Am inter- 

action is depicted; data for (a) inverted and (b) ordinary 
pendulums are displayed separately. Notice that the pattern 
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of wsults for inverted and ordinary pendulums is qualita- 
tively similar. Comparison of Figure 6 with Figure 2a indi- 
cate?, that the expected main effect of Am was achieved for 
both inverted and ordinary pendulums: &,,,, - I&, was mini- 
mal (0.04 rdd) when Am = 0, increased in the negative direc- 
tion I~ -0.2 1 rad) when Am = - 1.55, and increased in the pos- 
itive direction (0.29 rad) when Am = +1.55. An ANOVA 
revwled that observed trend to be significant, F(2, 14) = 
121.43, p < ,0001; all three levels of AW were significantly 
different from each other (Tukey, p < .01). In support of 
group theory, q&,,, - &, was nearly equivalent in magnitude 
for equal but opposite values of Am. The Orientation x Am 
interiiiction was nonsignificant, F(2, 14) = 1.59, p > .05, 
indicating that the effect of Am was identical for both invert- 
ed aird ordinary pendulum systems. 

- 

............................... .......................... .................. 

- 

-0.4 I 
-0.8 -0.6 -0.4 -0.2 0.0 

0 4 [  b 

-0.4 I 

-0.4 -0.2 0.0 0.2 0.4 

POSITION (rad) 

FIGURE 5. Normalized phase portraits for (a) an inverted 
ant1 (b) an ordinary pendulum, each held in the right hand 
of ii representative participant for two different trials (Am = 
0; ow= II) in Experiment 2. The proximity of both phase 
plane orbits to a perfect limit cycle indicates that relative 
phase may be computed in the same manner for both invert- 
ed m d  ordinary pendulums. 

When reflectional symmetry is broken by Am # 0, fixed 
point shift is predicted by Equation 1 to be greater for q& = 
n than for @v = 0, with the magnitude of the difference 
dependent on the choice of parameters a and b. Greater 
fixed point shift for antiphase has been found in some stud- 
ies (e.g., Sternad et a]., 1996; Treffner & Turvey, 1995) but 
not in others (e.g., Amazeen et al., 1995; Schmidt et a]., 
1993; Sternad et al., 1992). The @ul x Am interaction was 
nonsignificant, F(2, 14) = 1.58, p > .05, supporting the find- 
ing that fixed point shift did not differ across intended 
phase. Although the Orientation x @ul x Am interaction was 
marginally significant, F(2, 14) = 3.74, p = .05, post hoc 
ANOVAs revealed that the & x AW interaction was signifi- 
cant for neither ordinary, F(2, 14) = 2.67, p > .05, nor 
inverted, F(2, 14) = 2.92, p > .05, pendulums. Therefore, 

-*- 9, I 

0.4 I b 

0.2 - 
h 

2 
L, 
v 

3 '  
-Q- 0.01 

-0.2 - 

, 

1 -~ 1 -0 4 
-1 5 5  0 1 5 5  

FIGURE 6. Deviation of mean relative phase from intend- 
ed phase, &,,, - &, for the Orientation x @v x Aw interac- 
tion in Experiment 2. Results for (a) inverted pendulums 
and (b) ordinary pendulums are displayed separately, 
although the pattern of fixed point shift was not differen- 
tially affected by pendulum orientation. 
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P. G. Amazeen, E. L. Amazeen, & M. T. Turvey 

differences in the orientation of the two pendulum systems 
(inverted or ordinary) did not differentially affect the stan- 
dard pattern of fixed point shift. 

Standard Deviation of Relative Phase 
SO@ as a function of orientation and Am is depicted in 

Figure 7. Comparison of Figure 7 with Figure 2b indicates 
that the standard pattern of variability was achieved: SD@ 
was minimal (0.18 rad) when Am = 0 and increased at both 
Am = -1.55 (SO@ = 0.26 rad) and Am = +1.55 (SD@ = 0.27 
rad). The Am trend was significant, F(2, 14) = 15.85, p < 
.0005. In agreement with Equation 1 and the Extended 
Curie Principle, equal deviations from Am = 0, that is, Am = 
fl.55, produced identical SO@. The Aweffect was not iden- 
tical for ordinary and inverted pendulums, F(2, 14) = 17.21, 
p < .0005. Although simple effects analyses for the Orien- 
tation x Am interaction revealed the Am trend to be signifi- 
cant for both inverted, F(2, 14) = 4.39, p < .05, and ordinary 
pendulums, F(2, 14) = 23.81, p < .001, the trend was con- 
siderably weaker for inverted pendulums. The source of the 
difference was at Am = 0: SO@ was significantly greater for 
inverted pendulums than for ordinary pendulums at Am = 0, 
F(1,7) = 276.41 ,~  < ,001, but not at A0=-1.55, F(1,7) = 
3.13,p>.05,orAw=+1.55,F(l,7)=5.04,p>.05.There- 
fore, although both inverted and ordinary pendulums 
revealed the same effect of Am on stability, it is obvious 
that inverted pendulums were less stable than ordinary pen- 
dulums, at least at Am = 0. 

Variability differences are often but not always found 
between in-phase and antiphase in fixed point data; 
antiphase usually proves to be less stable (e.g., Amazeen et 

0.3 

h a 
2 
1 a 0.2 

n 
v? 

0.1 

+ Ordinary 

-1.55 0 1.55 

A u  ( r ad*s” )  

FIGURE 7. Standard deviation of relative phase, SO@ as a 
function of orientation and Am in Experiment 2. Although 
the same pattern of variability was witnessed for both ordi- 
nary and inverted pendulums, the inverted pendulums were 
considerably less stable at Am = 0. 

al., 1995; Sternad et al., 1996). In the present experiment, 
SO@ was significantly higher for &, = 7c (0.26 rad) than for 
@,+,= 0 (0.22 rad), F(1,7) = 43.68, p < .0005, supporting the 
notion that two equally symmetric phase relations can be 
differentially stable in the coordination dynamics. I t  is 
interesting that the differential stability of coupled inverted 
and coupled ordinary pendulums (at Am = 0) places them in 
the same category. The lack of an Orientation x @,+, interac- 
tion, F(1, 7) = 1.53, p > .05, indicates that the in- 
phase-antiphase difference held for both inverted and ordi- 
nary pendulums. Therefore, in agreement with Equation 1 ,  
both inverted and ordinary pendulum systems showed less 
variability in the vicinity of 0 than in the vicinity of 7c. 

In Experiment 2, we tested the following two hypotheses: 
First, for both kinds of coupled systems, breaking the 
reflectional symmetry of Equation 1 in reflectionally relal- 
ed ways, that is, Am = & 1.55, leads to one of a number of 
reflectionally related states. That hypothesis was confirmed 
for both ordinary and inverted pendulum systems. Second, 
breaking the reflectional symmetry of Equation 1 affects the 
equilibria of a system of coupled inverted pendulums (mini- 
icking the two arms raised, as in Figure Id) in precisely the 
same way that it affects the equilibria of a system of cou- 
pled ordinary pendulums (mimicking the two arms hanging 
by the side, as in Figure lc). Although the location of the 
stable states of the inverted and ordinary pendulum systems 
was shifted identically, at Am = 0, the equilibria of coupled 
inverted pendulums were less stable-that is, more vari- 
able-than the equilibria of coupled ordinary pendulums. 
That latter outcome points to the significance of physical dif- 
ferences between inverted and ordinary pendular motions. 

At the level of the individual pendulum-that is, at the 
local level-inversion is an unstable state. An inverted pen- 
dulum that is not externally supported does not remain 
inverted; even when it is supported, gravity serves to dis- 
place it from the vertical position. Therefore, at the lociil 
level, an inverted pendulum (a raised arm) is physically dif- 
ferent from an ordinary pendulum (a hanging arm). The 
argument put forth in the present article, however, is that a 
system of two inverted pendulums abides by the same coor- 
dination dynamics-at the global level-and therefore is 
dynamically the same as a system of two ordinary pendu- 
lums. The topological similarity of phase portraits for coil- 
pled ordinary pendulums and coupled inverted pendulums 
supports that claim. That systems of inverted pendulums are 
less stable than systems of ordinary pendulums does not 
negate the fact that their coordination dynamics is qualita- 
tively the same. The global dynamics appear to be indiffer- 
ent to the orientation of the particular two-limb system but 
sensitive to its reflectional symmetry? 

EXPERIMENT 3 
It is not trivial to find, as was the case in Experiment 2 ,  

that reflectional symmetry and its breaking have qualita- 
tively the same consequences for systems of coupled invert- 
ed or coupled ordinary rhythmic movements. That finding 
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Broken Symmetries in lnterlimb Coordination 

emphasizes the fact that the coordination dynamics of 
Equatim I is governed by symmetry-based properties that 
are deiined over the coordinative system as a whole rather 
than simply by the characteristics of the individual subsys- 
tems. The finding of Experiment 2 that a system of inverted 
pendulums nevertheless retains the stamp of the individual 
subsyhkms (in the form of greater variability) implies that 
coordinating the movements of physically identical but dif- 
ferently oriented limb segments (e.g., Figures 3a and 3b) 
should break the reflectional symmetry of the elementary 
coordination dynamics (Equation I ,  when Am = 0) in much 
the saint: manner as do differences in timing (Am # 0). 
Specifically, to the extent that the two limb segments cannot 
contrihute equally to the coordination, breaking reflectional 
symmc.try through differences in spatial orientation will 
produc L‘ asymmetrical solutions (i.e., $a,,, - $, # 0). 

111 Flxperiment 3, one-to-one frequency locking of an 
inverlcd and an ordinary pendulum was compared with the 
1 : 1 frequency locking of two ordinary pendulums for three 
values of Am---specifically, 0 and f 1 .S5 rad s-I. At Am = 0, 
we exllected that coordination of differently oriented pen- 
dulumz-but not identically oriented pendulums-would 
be shilled from the archetypal patterns of $ = 0 and $ = n: 
because of reflectional symmetry breaking. For the same 
reason, shift of the fixed points should be witnessed at Am = 

for both differently oriented and identically oriented 
pendulum pairs. There is no theoretical basis for predicting 
whethcr the shift of $ from 0 and n: produced by differences 
in spatial orientation alone will be greater or less than the 
deviatiijn produced by differences in both timing (that is, 
Am = .j: I SS) and spatial orientation; the minimal expecta- 
tion i4 that the factors of orientation and Aw will interact. 

Method 
Purtic.rpcints 

Foui men and 4 women, all undergraduate students at the 
Univei .;ity of Connecticut, participated in the experiment in 
exchange for credit toward their introductory psychology 
course One of the 8 participants was left-handed, but no 
differelice between her performance and that of the right- 
handed participants was observed. None of the participants 
had prcviously participated in hand-held pendulum tasks. 

Des i.qi: 

Pai-ticipants were instructed to maintain $, = 0 or $v = IT 
with ulther two ordinary pendulums (both weighted below 
the hand) or two pendulums of opposite orientation (one 
weigh~cd above the hand. one weighted below the hand). 
Becauhe the rods extended both below and above the hand, 
we chose the convention of defining $ according to the spa- 
tial relation between the two upper segments of the rods 
(equivalent to $defined for the lower segments of the rods), 
which ~ l s o  corresponded to the anatomical configuration of 
the flcxor-extensor muscles in the wrists. Antiphase is 
depict1.d in Figure 8 for differently oriented pendulums. 
Note that although there was an antiphase relation both spa- 
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tially-the upper segments of the pendulums were opposite 
in cycle-and anatomically-the left wrist was flexed while 
the right was extended-the weighted portion of the differ- 
ently oriented pendulums was pointed in the same direction, 
that is, forward. In contrast, when the pendulums were iden- 
tically oriented, the definition of $ extended to the relation 
between the weighted portions of the pendulums: In-phase 
corresponded to weighted portions that pointed in the same 
direction, and antiphase corresponded to weighted portions 
that pointed in opposite directions. 

Manipulations of Am = we,, - wlai,, were identical to 
those in Experiment 2 .  That is, for both differently oriented 
and identically oriented pendulums, when the pendulum 
that was held in the left hand was faster (weighted closer to 
the hand) than the pendulum that was held in the right hand, 
Am > 0, and when the pendulum that was held in the left 
hand was slower (weighted farther from the hand) than the 
pendulum that was held in the right hand, Aw < 0. Accord- 
ingly, participants were run under 12 conditions (2 orienta- 
tions x 2 $v x 3 Am), with two trials per condition. Data col- 
lection was otherwise identical to the procedure used in 
Experiment 2.  

Procedure 

Participants held the rods vertically. In the identically ori- 
ented pendulums condition, the center of the palm was posi- 
tioned 0.6 m from the bottom of each rod, with the metal 
ring located below the hand. In the differently oriented pen- - 

FIGURE 8. Reflectional symmelry was broken when p x -  
ticipants coordinated the movements of an inverted pendu- 
lum that was held in one hand with those of an ordinary pen- 
dulum that was held in the other hand. Relative phase was 
defined according to the spatial relationship be(wccn the 
upper segments of the pendulums. Antiphase is depicted 
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P. G. Amazeen, E. L. Amazeen, & M. T. Turvey 

dulums condition, the left palm was positioned 0.6 m from 
the top of the rod, with the metal ring located above the 
hand, and the right palm was positioned 0.6 m from the bot- 
tom of the rod, with the metal ring located below the hand. 
The cxperimental procedure was identical to that used in 
Experiment 2. 

Results and Discussion 
Frequency 

A cycle-by-cycle compaison of the frequency of oscilla- 
tions of the left and right pendulums indicated that the 
required 1 : 1 frequency locking was achieved. 

Mean Relative Phase 
- q+, as a function of Am is depicted for 

both differently oriented and identically oriented pendulums. 
Although there was a significant Am trend, F(2,14) = 105.03, 
1' < .0001, with all three levels of Am significantly different 
from each other (Tukey, p < .Ol), there was a clear difference 
between the differently oriented pendulums and the identical- 
ly  orienled pendulums. Replicating the results of Experiment 
2, @,,, - I$, for the identically oriented (coupled ordinary) 
pendulums was minimal at Am = 0 (0.09 rad) and deviated 
from zero in a direction specified by the sign of Am (&,,, - qby 
=-0.25 radatAm=-1.55; &,,,-q5,=0.29radatAm=+1.55). 
In contrast, for differently oriented pendulums, qaVe - #y was 
minimal at Am = +1.55 (0.10 rad) and negative for both Am = 
- 1  5 5  (-0.30 rad) and Am = 0 (-0.26 rad). When the pendu- 
lums satisfied Am = 0, but were opposite in orientation, the 
ordinary pendulum (held in the right hand) was phase 
advanced of the inverted pendulum (held in the left hand). 
The main effect of orientation was significant, F(1, 7) = 
62.50, p < .0001; fixed point shift was significantly more neg- 
ative for differently oriented pendulums than for identically 
oriented pendulums. The Orientation x Am interaction was 
also significant, F(2, 14) = 23.22, p < ,0001; simple effects 
analyses revealed that whereas the two pendulum orientations 
were statistically equal at Am= -1.55, F(1,7) = 1 . 9 9 , ~  > .05, 
fixed point shift was significantly more negative for differ- 
cntly oriented pendulums at both Am = 0, F( 1, 7) = 97.99, p 
< ,001. and A m =  +1.55, F(1,7) = 27.48, p < .001. 

There was a main effect of intended phase, F(1, 7) = 
02.50, p < .0001; @il,,,- qy was significantly more negative 
for in-phase than for antiphase. There was a marginal inter- 
action of qy with Am, F(2, 14) = 3.66, p = .05; simple 
effects analyses pointed to no difference between qy = 0 and 
$, = TC at Am = -1.55 ($ave-&, = -0.27 rad for both 0 and TC) 
but in-phase was significantly less than antiphase at both 
Am = 0 (&, - Ow = -0.13 rad for 0; &,ve - &, = -0.04 rad for 
T C ) ?  F(1,7) = 1 4 . 7 9 , ~  < .01, and Am= +1.55 (@>,ve- &,= 0.15 
radforO; q5~,,,-&,=0.24radforn),F(l,7)=6.21,p<.05. 

An  anomalous finding was the significant deviation of 
41,,,, from TC (0.12 rad), r(7) = 3.61, p < .01, but not from 0 
(0.06 rad), t(7) = 1.98, p > .05, for the identically oriented, 
ordinary pendulums. A similar, but nonsignificant, trend 
was evident also in Experiment 2 (see Figure 6b). For both 

In Figure 9a, 

in-phase and antiphase coordinations under Am = 0, Equii- 
tion 1 predicts that $a,,, - @,, will not be significantly differ- 
ent from 0, and typically the prediction has been upheld 
unless there were handedness effects (Treffner & Turvey, 
1995). Participants in the present experiment were mostly 
right-handed ('just one exception), and the tendency is for 
right-handed participants to show a right hand lead, that is. 
qaV, - q+, c 0 (Amazeen, Amazeen, Treffner, & Turvey, 
1997; Riley, Amazeen, Amazeen, Treffner, & Turvey, 
1997; Treffner & Turvey, 1995, 1996). In the prt:sent 
experiment, antiphase coordination resulted in @,,c - @,,, > 
0, contrary to what would be expected on the basis of il 

right hand preference. 
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FIGURE 9. Patterns of (a) fixed point shift, as indexed by 
&ve- @,+,, and (b) variability, as indexed by SD$, as a func- 
tion of Am and pendulum orientation (differently oriented 
or identically oriented), in Experiment 3 .  Comparison of 
Figure 9 with Figure 2 indicates that the results lor identi- 
cally oriented pendulums replicate standard findings, 
whereas the pattern for differently oriented pendulums i s  
significantly skewed. 
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Broken Symmetries in Interlimb Coordination 

Standard Deviation of Relative Phase 

Slhp as a function of Aw and orientation is depicted in 
Figurc 9b. Comparison of Figure 9b with Figure 2b reveals 
the expected symmetric pattern of variability for identical- 
ly orit.nted pendulums and an asymmetric pattern of vari- 
abilit? for differently oriented pendulums. Indeed, the Ori- 
entation x Aw interaction was significant, F ( 2 ,  14) = 73.04, 
p < .OOOl. Although simple effects analyses revealed a sig- 
nificm Aw trend for both differently oriented pendulums, 
F(2. 11) = 28.36, p < .001, and identically oriented pendu- 
lums, b'(2, 14) = 89.75, p < .001, the trend for differently 
oricntld pendulums was skewed. Tukey pairwise compar- 
isons ip < .01) revealed that, for differently oriented pen- 
duluin\, SU@ at both Am = 0 and Am = + 1.55 was statisti- 
cally equal and significantly less than SO@ at Am = - I  5 5 .  
Conip;irison of Figures I 1 a and 1 1 b for differently orient- 
ed peidulums reveals the implication of that finding: that 
both ncar-perfect production of a phase relation (at Aw = 
+ 1.55 5 and imperfect production of a phase relation (at Aw = 
0) can he equally stable. 

The two pendulum configurations (identically oriented 
and diiferently oriented) were differentially stable, F( I ,  7) = 
90.53, p < ,0001. Simple effects analyses from the Orienta- 
tion x Aw interaction indicated that SO4 was significantly 
greatei for differently oriented pendulums at both Am = 

HI.  7)  = 77.10, 1' < ,001, and Aw = 0, F(1, 7) = 
158.20, p < .001, but that the two orientation conditions 
were .tatistically equal at Aw = +I.%, F(1,  7) < 1. As 
expected, antiphase was significantly more variable than 
in-phase, F( I .  7) = 99.84, p < .0001. More important, the 
fact th'it CpW interacted with neither orientation nor Aw indi- 
cates that in-phase was uniformly more stable for both ori- 
entalion conditions. To reiterate an earlier point, if both 
identic d ly  oriented pendulums and differently oriented 
pendulums are members of the reflectional symmetry 
group. then they may be accommodated by the same coor- 
dination dynamics, and yet-like in-phase and antiphase- 
exhibit differential stability. 

Our focus in Experiment 3 was on the correspondences 
betwecn equilibria of differently oriented pendulums and 
identic.dly oriented pendulums. From the perspective of 
Equation 1,  the fact that differently oriented pendulums at 
Aw = ( 1  did not coordinate at &,,, - @W = 0 implies a break- 
ing o f  wflectional symmetry. Given the identical results for 
couplctl ordinary and coupled inverted pendulums found in 
Experiment 2 ,  it  is reasonable to conclude that the uncou- 
pled frcquencies of an ordinary and an inverted pendulum 
of the ,ame L are identical and, therefore, that Am was, in 
fact, xro. Consequently, the deviation of & - &, from 0 
must bc attributed to a breaking of reflectional symmetry 
different in kind from that captured by Am. 

EXPERIMENT 4 

In Experiment 3, differently oriented pendulums were con- 
stituted by an ordinary right pendulum and an inverted left 

pendulum (a left [L] -up configuration). They could just as 
well have been constituted in the reverse manner-by an 
inverted right pendulum and an ordinary left pendulum (a 
right [R] -up configuration). A prediction following from 
group theory is that two reflectionally related states of the 
system will produce solutions that are related by the tetlec- 
tional transformation. More concretely, the asymmetric 
solution produced by the configuration depicted i n  Figure 
3a (e.g., @:,,,,- @v/ = -A, for example, should be rellectional- 
ly related to the solution produced by the configuration 
depicted in Figure 3b (e.g., @avc- q W =  +A. In Experinlent 4, 
those two configurations were compared in in-phase and 
antiphase coordination at three Aw values: 0 and +_ 1.55 rad 
s-I. On the understanding that symmetry breaking is  more 
accurately considered to be symmetry sharing (Stewart Csr 
Golubitsky, 1992), we expected that if the coordination 
dynamics of differently oriented pendulums abide by tctlec- 
tional symmetry, then the three fixed points of the R-up 
configuration and the three fixed points of the L-up config- 
uration should be related by reflection. Specilically, i f  both 
Am and @;,,,?- $v, are multiplied by -1 for the R-up pcndu- 
lums, then (other things being equal) they should yield the 
corresponding fixed points for L-up. 

Method 
Po rticijmi ts 

Four men and 4 women, all undergraduate students at the 
University of Connecticut, participated in the cxperiment in  
exchange for credit toward their introductory psychology 
course. All 8 participants were right-handed and na'ivc with 
respect to the hand-held pendulum task. 

Design 

Participants were instructed to maintain @,y = 0 or Q)~, = n 
with pendulum pairs that were configured s o  that either the 
pendulum held i n  the left hand was inverted (L-up) or the 
pendulum held in the right hand was inverted (K-up). 
Manipulations of Am were identical to those in Experiments 
2 and 3. Therefore, participants were run under I2  condi- 
tions (2 configurations x 2 $,,, x 3 Am), with two trials per 
condition. Data collection was identical to (lie procedures 
used in Experiments 2 and 3 .  

Prriced~ri~ 

Participants held the rods vertically. I n  thc L-up condi- 
tion, the left palm was positioncd 0.6 m from the top of' the 
rod, with the metal ring located above the hand. and the 
right palm was positioned 0.6 m from the bottom of the 
rod, with the metal ring located below the hand. I n  the R- 
up condition, the left palm was positioned 0.6 i n  frorn the 
bottom of the rod, with the metal ring located below the 
hand, and the right palm was positioned 0.6 ni from the top 
of the rod, with the metal ring located above the hand. The 
experimental procedure was identical to that used in Exper- 
iments 2 and 3. 
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P. G. Amazeen, E. L. Amazeen, & M. T. Turvey 

Results and Discussion 
Frequency 

A cycle-by-cycle comparison of the frequency of oscilla- 
tions of the left and right pendulums indicated that the 
required I : 1 frequency locking was achieved. 

Mean Relative Phase 
In  Figure IOa, $cl,e- $w as a function of Am is depicted for 

both L-up and R-up pendulum configurations. Notice that 
$,,,< - $,/, was negative at both Am = -1.55 and Am = 0 for L- 
Lip and positive at both Am = O and Am = + I  .55 for R-up, 
indicating that the inverted pendulum tended to lag the ordi- 

0 2  ,/ 

0 
I 

9 '  
-0 2 

_- 
-o rl I- 

-1 55 

O 4  b 

-0- L - u p  
--t R - U P  

_. I 
0 1.55 

--t R - U P  

--d 
0 1.55 

(rad. s . ' )  

FIGURE 10. Dcviation of mean relativc phase from intend- 
ed phase, @,,, - &, as a function of Am for L-up and R-up 
pcndulum configurations in Experiment 4, both (a) before 
and (b) after transformation. We transformed data by multi- 
plying both Am and @,,be - &,by -1. If differently oriented 
pcnduluins abide by reflectional symmetry, then fixed points 
lor L-up and R-up should be identical following a reflec- 
tional transformation. L = left, and R = right. 

nary pendulum in both configurations. It can also be scen 
that the Am trend for L-up was identical to that for L-up i n  
Experiment 3, whereas, for R-up, the Am trend was an 
exact mirror image through the origin (0.0). Re,flection of thc 
results for R-up took the form of exchanging the left and right 
pendulums both for Am-that is, -I(Am) = ( ( ~ , ~ h ,  - mlCtt)--- 
and for be- &, where -l(@ = (O",,, - %,J. The result oC 
reflecting the R-up fixed points is shown in Figure lob. 

As is suggested by Figure lob, the Am trends for the two 
configurations (L-up and R-up) were identical; there was no 
main effect of configuration, F( I ,  7) < 1,  and there was no  
interaction between configuration and Am, F( I ,  7) < I .  In 
replication of the results for differently oriented pendulums 
in Experiment 3, there was the significant Am trend, F(2.  
14) = 117.10, p < .0001, with minimal fixed point shift at 
Am = +1.55 (0.12 rad) and negative and statistically equal 
shift for both Am = -1.55 (-0.34 rad) and Am = 0 (-0.25 rad; 
Tukey, p < .01). The &, x Am interaction was significant. 
F(2, 14) = 5.04, p < .05; in partial replication of the results 
of Experiment 3, simple effects analyses revealed that the 
production of in-phase was significantly more negative than 
the production of antiphase at Am = +1 S 5 ,  F( 1,  7) = 3 1.62. 
p<.OOl, butnei theratAm=-lS5,F(l ,7)=9SO,p> .01, 
noratAm=O,F(1,7)=7.79,p>.Ol .  

Standard Deviation of Relative Phase 
SO$ as a function of Am for both L-up and R-up pendu- 

lum configurations is shown in Figure I la. Across both 
configurations, SD$ was minimal (0.24 rad) when Am = 0 
and increased equally for both Am = -1 5 5  (0.31 rad) and 
Am = + 1.55 (0.31 rad). That Am trend was significant, 
F(2, 14) = 15.18, p < .0005. Although the Am effect wiis 
not numerically identical for L-up and R-up, with SD$ at 
Am = -1.55 greatest for L-up and SO$ at Am = + 1.55 great- 
est for R-up, the Orientation x Am interaction was no1 sig- 
nificant, F(2,  14) = 1.55, p > .05. The results of transform- 
ing the R-up data points in the manner described earlicr 
(with reference to the mean relative phase data in Figure 
10) suggested that any asymmetry of the Am trend was sta- 
tistically identical for both configurations, F(2, 14) < 1 (we 
Figure 1 lb). Analyses performed on the transformed data 
revealed statistical significance only between SO@ at Am = 
-1.55 and SD$ at Am = 0. That result replicates the finding 
of Experiment 3 that both symmetric and asymmetric 
phase relations, as produced by Am = + 1.55 and Am = 0, 
respectively, can be equally stable. 

As expected, in-phase (SD$ = 0.27 rad) was significantly 
more stable than antiphase (SD$ = 0.30 rad), F(1, 7) = 
99.84, p < .OOOl; however, a significant interaction of &, 
with pendulum configuration, F(I, 7) = 5.91, p < .05, 
revealed the differential stability of in-phase and antiphase 
for the L-up configuration only, F( I ,  7) = 23.52, p < .O I (see 
also the results of Experiment 3). 

Experiment 4 was primarily directed at the expectation 
that if the coordination dynamics of differently orientcd 
pendular motions were reflectionally asymmetric, then thc 
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Broken Symmetries in lnterlimb Coordination 

O 4  a 

_ _  - L - u p  

--t R - u p  
~ - 1  -1 0 2  -- 

155 0 155 

O 4  b 

0 3  

FIGURE 11. Standard deviation of relative phase. SO@ as 
;I Irinction of  Am for L-up and R-up pendulum configura- 
l i o i n  i n  Experiment 4, both (a) before and (h) after transfor- 
miti ion (described in Figure 10). I f  differently oriented pen- 
dulums abide by reflectional symmetry, then SO@ for L-up 
anti R-up should be identical Following a reflectional trans- 
fortnation. L = left, and R = right. 

fixcstl points for R-up and L-up induced by manipulations 
of A ~ I ,  would be related by a reflectional transformation. 
That c.xpectation was confirmed (see Figure 10). As a sec- 
ondary feature, Experiment 4 together with Experiment 3 
provided results with bearing on experiments that have 
been Jirected at intersegmental coordinations of honiolo- 
gous muscle groups (two arms or two legs) and nonho- 
mologous muscle groups (one arm and one leg) (Jeka & 
Kelso 1995; Kelso & Jeka, 1992). Using a spatial dcfini- 
tion ( t f  $ in which flexion-flexion pairings were consid- 
ered in-phase for homologous limb segments and flex- 
ion-cxtension pairings were considered in-phase for 
nonhomologous limb segments, Kelso and Jeka replicated 
the stvndard findings regarding the differential stability of 
the phase modes 0 and n (e.g., Kelso, 1984). Comparison 

of homologous with nonhomologous muscle group pair- 
ings revealed higher SO$ for nonhomologous limb pair- 
ings, a result that is consistent with the findings of Exper- 
iment 3 that differently oriented limbs were less stable 
than identically oriented limbs. 

GENERAL DISCUSSION 
In the present series of experiments, we addressed the 

ability to coordinate differently oriented and differently 
sized limb segments. The experimental procedures mimic- 
ked the coordination of the arms hanging by the sides (fre- 
quency locking of ordinary pendulums), the arms raised 
above the head (frequency locking of inverted pendulums), 
and the coordination of a hanging and a raised arm (fre- 
quency locking of an ordinary and an inverted pendulum). 
Defining a coordination pattern by $, that is, the phase dif- 
ference between the two rhythmically moving segments, 
our focus in the experiments was on the stable coordination 
patterns (fixed points or equilibria) that characterize the 
three different spatial arrangements of limb segments. In 
Experiments 1 and 2 ,  we studied the coordinations of two 
arms oriented in the same way with respect to gravity. 
Expectations were shaped by the coordination dynamics of 
Equation 1, in which reflectional symmetry is broken 
through differences in the timing AW of the limb segments. 
It is important to note that the results of the experiments 
showed that two coordinated limb segments behaving as 
inverted pendulums were identical in their equilibria values 
to two coordinated limb segments behaving as ordinary 
pendulums. For those two identically oriented systems, the 
coordination dynamics at the global level were the same 
despite differences in the physical dynamics at the local 
level (see Kelso, 1994b; Schoner, 1994). 

In Experiments 3 and 4, we investigated the coordination 
of two arms that were oriented in opposite ways with 
respect to gravity. The results of Experiment 3 showcd that 
the coordination dynamics of differently oriented limb seg- 
ments were characterized by different equilibria than the 
coordination dynamics of identically oriented limb seg- 
ments. The implication of that finding is that the coordina- 
tion dynamics of Equation 1 are incomplete with respect to 
reflectional symmetry breaking through differences in spa- 
tial orientation. The fact that a combination of temporal and 
spatial differences produced coordinative solutions that 
were closer to symmetry (i.e., perfect in-phase 0 and 
antiphase n coordination) than did spatial differences alone 
indicates the presence of an interaction between the two 
types of symmetry breaking that needs to be accommodat- 
ed by the coordination dynamics. Finally, in  Experiment 4, 
we showed that the equilibria of differently oriented limb 
segments depicted in Figures 3c (L-up) and 3d (R-up) were 
related by a reflectional transformation. That the coordina- 
tion of differently oriented limb segments belongs 10 the 
same reflectional symmetry group as does the coordination 
of temporally different limb segments implies that the 
accommodation of differently oriented limb segments may 
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P. G.  Amazeen, E. L. Amazeen, & M. T. Turvey 

be accomplished through the expansion, rather than 
rcplacemcnt, of Equation 1. 

Thc reflectional relatedness of L-up and R-up coordina- 
t ion  systems in Experiment 4 bears a striking similarity to 
Treffner and Turvey’s (1995) finding that identical solutions 
were produced when the right hand versus left hand distinc- 
tion was transformed into a distinction between the pre- 
I’erred and nonpreferred hand. Treffner and Turvey (1995, 
1906) showed that handedness effects on coordination result 
from an nsymmetric coupling between the preferred and 
nonpreferred hand, with the preferred hand having a 
stronger influence over the nonpreferred hand than the non- 
preferred hand has over it. That finding was demonstrated 
by a prelerred hand lead in relative phase. In Experiments 3 
iltid 4 of the present study, the manner in which asymmetric 
solutions were produced seemed to indicate an asymmetric 
coupling between the pendulums in which the ordinary pen- 
tlultini was phase advanced of the inverted pendulum; that 
is, the ordinary pendulum appeared to act as a type of pre- 
I’crred hand. That conclusion is not terribly surprising, be- 
cause ordinary pendulums are oriented in the direction of 
gravity and their coordination was shown in Experiment 2 to 
bc niorc stable than the coordination of inverted pendulums. 

If ‘Treft’ner and Turvey’s (1995, 1996) work on bilateral 
irsytnnictries were tapping into the more general issue of 
breaking rcllectional symmetry by spatial differences, then 
thcir expansion of Equation 1 through the addition of two 
cosine terms should accommodate both the asymmetric pat- 
terns of fixed point shift and (questionably) the imperfect 
correspondence between fixed point shift and variability. 
’Thc latter imperfection was noteworthy both in the deter- 
mination of the differential stability of in-phase and 
antiphase (see Experiment 4) and in the lack of a conclusive 
statement regarding the asymmetries at Am = 0. In both 
Experiments 3 and 4, temporally identical pendulums were 
found to produce greater fixed point shift and less variabil- 
i ty  than temporally different pendulums. When the compo- 
nents of coordination are spatially identical, as in Experi- 
ment 2 ,  fixed point and variability data correspond-the 
greater the shift, the greater the variability. 

The literature on movement disorders seems to indicate 
that the linding that asymmetric solutions can be more (or 
cqually) stable is not entirely unexpected. Although the sta- 
bility 0 1 ‘  the asymmetric gaits of stroke and Parkinson’s 
patients has yet to be empirically demonstrated, it has been 
argued that because those gaits are regularly and repeatedly 
produced, they are, in fact, more stable in those populations 
than symmetric gaits (e.g., Wagenaar, 1990; Wagenaar & 
van Emmerik, 1994). It is not unreasonable to believe that 
the change i n  gait that is witnessed in Parkinson’s and 
stroke patients might be mediated through a spatial asym- 
metry that is produced by the disorder, If manipulation of 
the added parameters in Treffner and Turvey’s (1995, 1996) 
modcl adequately describes the general category of spatial 
asynimelries, then the model may be able to address gait 
asymmetries produced by movement disorders. Unfortu- 

nately, Treffner and Turvey’s model does not account for 
the spatial asymmetries observed in the present study. 

The second option, then, is to consider an expansion of 
Am (the detuning term or imperfection parameter, as char- 
acterized by Collins, Sternad, & Turvey, 1996; Sternad. 
Collins, & Turvey, 1995)-introduced in Equation 1 lo rep- 
resent temporal differences in the component oscillators- 
so that it includes their spatial differences as well. Consid- 
eration of the imperfection parameter as a general 
symmetry breahng term would allow for representation of 
both the temporal and spatial composition of a coordinativc 
pattern, as well as their interactive qualities, as observed in 
the present research. Further empirical investigation of the 
temporal-spatial interaction, as well as the influence of thc 
coupling strength between the component oscillators, hla, is 
required before serious consideration is given to the precise 
form of the expansion. 

The present study was an empirical demonstration of thc 
Extended Curie Principle that whenever asymmetric solu- 
tions are witnessed, they are balanced by asymme,tric solu- 
tions that are qualitatively the same but opposite in direction 
(Stewart & Golubitsky, 1992). Stewart and Golubitsky 
applied the concept of symmetry sharing to symmetric 
equations that have asymmetric solutions. To date, howev- 
er, the asymmetries seen in two-limb coordination havc 
been accommodated only by asymmetric equations (e.g.. 
Equation 1). Nevertheless, the Extended Curie Principle 
appears to predict the form of the present results. Thereforc. 
a third option exists in which reflectional symmetry break- 
ing is accommodated by a symmetric equation similar i n  
kind to the elementary coordination dynamics (i.e., Am= O),  
in which the symmetry has not been broken but, rather. 
reduced (see Schoner et al., 1990, for instruction on the 
reduction of an equation’s symmetry). 

The symmetric relatedness of solutions permits nature to 
maximize its resources by allowing systems that are eyual- 
ly  asymmetric to produce qualitatively the same solution. 
As Stewart and Golubitsky (1992) remarked. “[MJothenrtri- 
iccrlly the laws that apply to symmetric systems can sonic- 
times predict not just a single effect, but a whole set of sym- 
metrically related effects” (p. 15). The challenge now is to 
find the coordination dynamics that underlie the symmetric 
structure of interlimb coordination. 
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NOTES 
I .  Group theory has been applied successfully to gait transitions 

in quadrupeds (e.g., Collins & Richmond, 1994; Collins & Stew- 
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art, IW3a; Haken. 1996; Schoner, Jiang, & Kelso, 1990). Three 
aspects of its previous application remain categorically distinct 
From thc present application and, therefore, prohibit direct corn- 
parisoil symmetry breaking that is induced (asymmetric condi- 
tions pr-ciduce asymmetric solutions) rather than spontaneous 
(symmctiic conditions produce asymmetric solutions-currently 
that Is ~~iss ib le  only with four-limb coordinations); the use ot' the 
Extended Curie Principle i n  group theory for generating hypothe- 
ses (see text for details); and a focus on stable state behavior rather 
than on phase transitions. Relatedly, the quadrupedal gaits ana- 
lyzed ~ c r e  all among limbs that differed in neither timing nor spa- 
tial orientation. Therefore, it  would be inappropriate to go into fur- 
ther dci.iils in  thc context of the present article. 

2. Ail important distinction must be made between the symme- 
try group ( in  this case, reflectional) and the members of the sym- 
metry ~rciup (in-phase and antiphase) that are accommodated by a 
coordindion dynamics (e.g., Equation I) .  In both group theory 
and thc coordination dynamics, in-phase and antiphase are both 
termcd wrnnierric phase rekutioris; an example of an asymmetric 
phasc i{.lation i s  90" ( d 2 ) .  a phase relation that is roughly equiv- 
alenl t ( ,  the hipedal gallop (e.g.. Peck & Turvey. 1997). The dif- 
ferencc Iwtween the two symmetric phase relations is that in-phase 
is tempt )rally preserved over a reflectional transformation, where- 
as anliphase. albeit unchanged categorically, is phase advanced by 
X cyclc The left limb forward and the right limb forward antiphase 
posture,> itre different only in terms of their (static) initial condi- 
tion, th.i l  condition is lost as soon as the system is set into motion 
and, tht-refore, has no effect on its dynamics. Because the dynam- 
ics of  wphase and antiphase are unaffected by reflection, no pre- 
dicti,oiir lollow from group theory regarding differences between 
then). I'he coordination dynamics alone make a distinction 
hetwecii the in-phase and antiphase members of the reflectional 
symmetry group: In-phase is more stable than antiphase and, 
therefor c ,  more persistent over frequency scaling (see phase tran- 
sition experiments of Kelso, 1984). 

3. Sicwart and Golubitsky ( 1992) applied the Extended Curie 
Principle to systems in which symmetry is spontaneously broken, 
that i \ .  to symmetric systemsdescribable by symmetric equa- 
tiona--that produce asymmetric solutions. Although spontaneous 
symmcwy breaking has been used to describe gait transitions in 
quadriqwds ce.g., Collins & Richmond, 1994; Collins & Stewart, 
1993a: Haken, 1996; Schoner et al.. 1990). it  is currently not applic- 
able ttr \table state two-limb coordinative patterns because, to date, 
only asvinmetric equations have been able to produce the witnessed 
asymmrtric patterns (e.g., Amazeen et al., 1996; Kelso et al., 1990; 
Rand. ('ohen, & Holmes. 1988). Stewart and Golubitsky labeled 
that liitcer instance of symmetry breaking induced and refrained 
from discussing the applicability of the Extended Curie Principle. 
I n  the mtpirical work presented in this article, we tested the extent 
to which Stewart and Golubitsky's Extended Curie Principle can be 
applictl io systems in which symmetry breaking is induced. 

4. hiplicit in Experiment 2 was one additional hypothesis with 
methotlological significance. The method of determining uncou- 
pled Ir~xpencies appropriate for the computation of Aw takes the 
undarripxi, undriven frequency (see Equation 2 and den Hartog, 
198Y10.34) as the relevant quantity. The results of Experiment 1 
indicalcd that when an ordinary, hanging pendulum is turned 
upsidc down, the movement frequency remains the same (see 
Smith .4i Blackburn, 1992, for application to purely physical sys- 
tems) However. the neuromuscular organization for oscillating an 
invericll pendulum cannot be identical to that for oscillating a 
hanging pendulum. The neuromuscular diffcrence is based on the 
fact thitl gravity tends to remove the inverted pendulum from the 
verticai. in contrast to its effect in the ordinary hanging situation; 
then. pixvity tends to return the pendulum LO the vertical. The evi- 
dence Iioni Experiment 2. that the equilibria of coupled inverted 
and coilpled hanging pendulums were the same for Aw = + I  .55, 

reinforces thc hypothesis that i t  i s  the undamped, undriven 
(unforced) frequencies that enter into the calculation of Aw rather 
than the damped, driven (forced) frequencies defined by thc neu- 
romuscular driving of the hand-held pendulums. 
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