12 research outputs found

    South China Sea Rifted Margin Testing hypotheses for lithosphere thinning during continental breakup: Drilling at the South China Sea rifted margin

    Get PDF
    International Ocean Discovery Program Expedition 368 is the second of two consecutive cruises that form the South China Sea Rifted Margin program. Expeditions 367 and 368 share the common key objectives of testing scientific hypotheses of breakup of the northern South China Sea (SCS) margin and comparing its rifting style and history to other nonvolcanic or magma-poor rifted margins. Four primary sites were selected for the overall program: one in the outer margin high (OMH) and three seaward of the OMH on distinct, margin-parallel basement ridges. These three ridges are informally labeled A, B, and C. They are located within the continent-ocean transition (COT) zone ranging from the OMH to the interpreted steady-state oceanic crust (Ridge C) of the SCS. The main scientific objectives include 1. Determining the nature of the basement within crustal units across the COT of the SCS that are critical to constrain style of rifting, 2. Constraining the time interval from initial crustal extension and plate rupture to the initial generation of igneous ocean crust, 3. Constraining vertical crustal movements during breakup, and 4. Examining the nature of igneous activity from rifting to seafloor spreading. In addition, the sediment cores from the drill sites targeting primarily tectonic and basement objectives will provide information on the Cenozoic regional environmental development of the Southeast Asia margin. Expedition 368 was planned to drill at two primary sites (U1501 and U1503) at the OMH and Ridge C, respectively. However, based on drilling results from Expedition 367, Expedition 368 chose to insert an alternate site on Ridge A (Site U1502). In total, the expedition completed operations at four sites (U1501, U1502, U1504, and U1505). Site U1503, however, was not completed beyond casing to 990 m because of mechanical problems with the drilling equipment that limited the expedition from 25 May 2017 to the end of the expedition to operate with a drill string not longer than 3400 m. New alternate Site U1504 proposed during Expedition 367 met this condition. Site U1505 also met the operational constraints of the 3400 m drill string (total) and was an alternate site for the already drilled Site U1501. At Site U1501, we cored to 697.1 m in 9.4 days, with 78.5% recovery. We also drilled ahead for 433.5 m in Hole U1501D and then logged downhole data from 78.3 to 399.3 m. In 19.3 days at Site U1502, we penetrated 1679.0 m, set 723.7 m of casing and cored a total of 576.3 m with 53.5% recovery, and collected downhole log data from 785.3 to 875.3 m and seismic data through the 10¾ inch casing. At Site U1503, we penetrated 995.1 m, setting 991.5 m of 10¾ inch casing, but no cores were taken. At Site U1504, we took 40 rotary core barrel (RCB) cores over two holes. The cored interval between both holes was 277.3 m with 26.8% recovery. An 88.2 m interval was drilled in Hole U1504B. At Site U1505, we cored 668.0 m with 101.1% recovery. Logging data was collected from 80.1 to 341.2 m. Operations at this site covered 6.1 days. Except for Site U1505, we drilled to acoustic basement, which prior to the expedition, except for Site U1501, had been interpreted to be crystalline basement. A total of 6.65 days were lost due to mechanical breakdown or waiting on spare supplies for repair of drilling equipment. At Site U1501 on the OMH, coring ~45 m into the acoustic basement sampled highly lithified sandstone to conglomerate of presumed Mesozoic age overlain by siliciclastic Eocene pre- to synrift sediments of Oligocene age and topped by primarily carbonaceous postrift sediments of early Miocene to Pleistocene age. Site U1502 on Ridge A was cased to 723.7 m. At this site, we recovered 180 m of hydrothermally altered brecciated basalts comprising sheet and pillow lavas below deep-marine sediments of Oligocene to late Miocene age. Coring was not performed within the upper 380 m (~Pliocene-Pleistocene) at Site U1502. At Site U1503 on Ridge C, 991.5 m of casing was installed in preparation for the planned deep drilling to ~1800 m, but no coring was performed due to mechanical failures, and the site was abandoned without further activity. Coring at Site U1504 on the OMH ~45 km east of Site U1501 recovered metamorphic schist to gneiss (greenschist facies) below late Eocene (?) carbonate rocks (partly reef debris) and early Miocene to Pleistocene sediments. At Site U1505, we cored to 480.15 m through Pleistocene to late Oligocene mainly carbonaceous ooze followed at depth by early Oligocene to late Eocene siliciclastic sediments. Efforts were made at every drill site to correlate the core with the seismic data and seismic stratigraphic unconformities interpreted within the Eocene to Plio-Pleistocene sedimentary sequence prior to drilling. The predrilling interpretation of ages of these unconformities was in general confirmed by drilling results. As a result of the constraints on the length of drill string that could be deployed during the later part of Expedition 368, the secondary expedition objectives addressing the environmental history of the SCS and Southeast Asia received more focus than planned because these sites are located in shallower water depths and required less penetration depth. This forced change in emphasis, however, was without fatal consequences for the primary tectonic objectives. The two expeditions together provided solid evidence for a process of breakup that included vigorous synrift magmatism as opposed to the often-favored interpretation of the SCS margin as a magma-starved margin

    Using problem-based learning to bring the workplace into the classroom

    No full text
    A modified form of problem-based learning (PBL) with problems based on real workplace scenarios was trialled in a third year university class on Environmental Geology. Problems were developed in consultation with industry and based on their recent projects. These were then modified to allow for the shorter timeframe available, the less developed technical skills of the students, and their inability to collect data on working sites. Students worked in small “company” groups. Each problem required the students to produce a tender or request for proposal (RFP) document and a report based on the industry-standard guidelines. Problem topics included a preliminary investigation of a contaminated site, a geotechnical investigation of a landslide-prone area, and preparation of geological data for an environmental impact assessment of a proposed mine site. The unit was designed using PBL as this teaching format leads to increased student engagement with the subject matter and development of a range of graduate attributes. Our modified form of PBL provides a lecture series that gives background to the problems and in this instance, almost all lectures were given by industry representatives. Students enjoyed the overall format and the use of real workplace examples. Group work generally rated more poorly in the unit evaluation than expected. Working with industry brought new challenges largely due to the mobility and time commitments of industry representatives in a field-based and global industry.10 page(s

    Multiple sources for volcanic rocks dredged from the Western Australian rifted margin

    No full text
    Igneous rock samples recovered during the 2008-09 Australian Southwest Margin Marine Reconnaissance Survey (GA-2476), off the Western Australian coast from Perth to the Wallaby Plateau, come from a variety of tectonic settings reflecting a complex magmatic history of this margin. Cretaceous rhyolite and basaltic andesite samples most likely erupted in a continental extensional setting, while younger volcanic samples reflect a transition to a mature passive continental margin with the generation of mid-ocean ridge basalt. During the last phase of volcanism, a series of volcanic cones and mounds with ocean island basalt geochemical signatures formed along the margin. The pre-rift sedimentary rocks sampled on the Wallaby Plateau support the viewpoint that it is an extended block of continental crust, overlain by syn-rift and post-rift volcanic rocks.16 page(s

    Opening of the South China Sea and its implications for southeast Asian tectonics, climates, and deep mantle processes since the late Mesozoic

    No full text
    The South China Sea (SCS) provides an outstanding opportunity to better understand complex patterns of continental margin breakup and basin formation. The sea is situated at the junction of the Eurasian, Pacific, and Indo-Australian plates and is a critical site linking some of the major western Pacific tectonic units. Despite extensive studies, sampling of basement rock and directly overlying basal sediment in the deep basin is lacking. This leaves a large margin of error in estimated ages of the SCS open-ing and closing, rendering various hypotheses regarding its opening mechanism and history untested. This also hampers understanding of East Asian tectonic and paleo-environmental evolution. We drilled five sites in the deep basin of the SCS. Three of these sites (U1431, U1433, and U1434) cored into oceanic basement near the fossil spreading center. The two remaining sites (U1432 and U1435) are located proximal to the northern continent/ocean boundary. We recovered a total of 1524 m of sediment/sedimentary rock and 78 m of oceanic basalt and also carried out downhole geophysical logging (triple combination and Formation MicroScanner-sonic tool strings) at the two deepest sites (U1431 and U1433). These materials and data were extensively examined and discussed during the expedition and allowed us to draw the following principal conclusions on the opening of the SCS: 1. Based on shipboard dating of microfossils in the sediment immediately above the basaltic basement and between the lava flow units, the preliminary cessation age of spreading in both the East and Southwest Subbasins is around early Miocene (16-20 Ma). Further postcruise radiometric dating of basement basalt from these sites plus additional calibration of magnetic anomaly models and paleomagnetic measurements will further refine the age range. Overall, a large difference is not apparent in the terminal ages of seafloor spreading between the two subbasins. 2. At Site U1435, we were able to drill into a structural high standing along the continent/ ocean boundary. Coring at this site recovered a sharp unconformity at ~33 Ma, above which is marine sediment and below which are poorly sorted sandstone and black mudstone, interpreted as littoral deposits. Environmental interpretation will require further shore-based studies because the sequence is almost entirely barren of marine microfossils. Nevertheless, we interpret this unconformity to be likely directly related to the continental break-up during the initial opening of the SCS. The onset of seafloor spreading is therefore estimated to be at ~33 Ma. 3. All sites contain deep marine deposits but show significant areal variations in postspreading sedimentary environment and provenance. Site U1431 records ev-idence for deep-marine turbidite deposition from terrestrial sources. The ob-served coarser silt turbidites may have a source in Taiwan or other surrounding blocks, whereas interbedded calcareous turbidites at this site could be trans-ported from local sources, such as nearby seamounts topped by carbonate plat-forms. In contrast, the source for upper Miocene clay and silt turbidites at Site U1433 could be from Borneo or mainland Southeast Asia, with the source of the interbedded carbonate turbidites likely from the Dangerous Grounds or Reed Bank area located south of the site. 4. Sites U1431 and U1434 are close to seamounts developed along the relict spread-ing center. Occurrences of basaltic clasts and mineral fragments in the volcani-clastic sandstone and breccia may reveal the magmatic history and mantle source of the seamounts and potentially their relationship with the terminal pro-cesses of spreading. The volcaniclastic breccia and sandstone at Site U1431 are dated as late middle Miocene to early late Miocene (~8-13 Ma), suggesting a 5 m.y. duration of seamount volcanism starting a few million years after the ces-sation of seafloor spreading. At Site U1434, volcaniclastic breccia and sandstone are most likely sourced from the adjacent seamount ~15 km to the north. The age of this recovered unit is late Miocene (younger than 9 Ma). Further postcruise sedimentological and geochemical studies, as well as radiometric dating of potas-sium-bearing mineral fragments, will refine the ages and timing of these sea-mount activities and reveal how magma sources at the dying spreading center evolved through time. 5. We successfully cored into ocean basement in the SCS for the first time and re-covered basalt at three sites (U1431, U1433, and U1434). The cored basalt has variable phase assemblages of plagioclase, olivine, and clinopyroxene and is con-cluded to be typical mid-ocean-ridge basalt based on petrological and geochem-ical evidence. Postcruise radiometric dating will determine the absolute ages of the basaltic basement units. Postcruise petrological and geochemical analyses on the basalts will provide information on the mantle sources, melting, and crystal-lization history of the youngest ocean crust

    Seismic stratigraphy of the central South China Sea basin and implications for neotectonics

    Get PDF
    Coring/logging data and physical property measurements from International Ocean Discovery Program Expedition 349 are integrated with, and correlated to, reflection seismic data to map seismic sequence boundaries and facies of the central basin and neighboring regions of the South China Sea. First-order sequence boundaries are interpreted, which are Oligocene/Miocene, middle Miocene/late Miocene, Miocene/Pliocene, and Pliocene/Pleistocene boundaries. A characteristic early Pleistocene strong reflector is also identified, which marks the top of extensive carbonate-rich deposition in the southern East and Southwest Subbasins. The fossil spreading ridge and the boundary between the East and Southwest Subbasins acted as major sedimentary barriers, across which seismic facies changes sharply and cannot be easily correlated. The sharp seismic facies change along the Miocene-Pliocene boundary indicates that a dramatic regional tectonostratigraphic event occurred at about 5 Ma, coeval with the onsets of uplift of Taiwan and accelerated subsidence and transgression in the northern margin. The depocenter or the area of the highest sedimentation rate switched from the northern East Subbasin during the Miocene to the Southwest Subbasin and the area close to the fossil ridge in the southern East Subbasin in the Pleistocene. The most active faulting and vertical uplifting now occur in the southern East Subbasin, caused most likely by the active and fastest subduction/obduction in the southern segment of the Manila Trench and the collision between the northeast Palawan and the Luzon arc. Timing of magmatic intrusions and seamounts constrained by seismic stratigraphy in the central basin varies and does not show temporal pulsing in their activities.23 page(s

    Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323)

    No full text
    We studied microbially mediated diagenetic processes driven by carbon mineralization in subseafloor sediment of the northeastern Bering Sea Slope to a depth of 745 meters below seafloor (mbsf). Sites U1343, U1344 and U1345 were drilled during Integrated Ocean Drilling Program (IODP) Expedition 323 at water depths of 1008 to 3172 m. They are situated in the high productivity "Green Belt" region, with organic carbon burial rates typical of the high-productivity upwelling domains on western continental margins. The three sites show strong geochemical similarities. The downward sequence of microbially mediated processes in the sediment encompasses (1) organoclastic sulfate reduction, (2) anaerobic oxidation of methane (AOM) coupled to sulfate reduction, and (3) methanogenesis. The sediment contains two distinct zones of diagenetic carbonate formation, located at the sulfate–methane transition zone (SMTZ) and between 300 and 400 mbsf. The SMTZ at the three sites is located between 6 and 9 mbsf. The upward methane fluxes into the SMTZ are similar to fluxes in SMTZs underlying high-productivity surface waters off Chile and Namibia. Our Bering Sea results show that intense organic carbon mineralization drives high ammonium and dissolved inorganic carbon (DIC) production rates (> 4.2 mmol m⁻³3 y⁻¹) in the uppermost 10 mbsf and strongly imprints on the stable carbon isotope composition of DIC, driving it to a minimum value of − 27‰ (VPDB) at the SMTZ. Pore-water calcium and magnesium profiles demonstrate formation of diagenetic Mg-rich calcite in the SMTZ. Below the SMTZ, methanogenesis results in ¹³C-enrichment of pore-water DIC, with a maximum value of + 11.9‰. The imprint of methanogenesis on the DIC carbon isotope composition is evident down to a depth of 150 mbsf. Below this depth, slow or absent microbially mediated carbon mineralization leaves DIC isotope composition unaffected. Ongoing carbonate formation between 300 and 400 mbsf strongly influences pore-water DIC and magnesium concentration profiles. The linked succession of organic carbon mineralization and carbonate dissolution and precipitation patterns that we observe in the Bering Sea Slope sediment may be representative of passive continental margin settings in high-productivity areas of the world's ocean.11 page(s

    Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349

    Get PDF
    Combined analyses of deep tow magnetic anomalies and International Ocean Discovery Program Expedition 349 cores show that initial seafloor spreading started around 33 Ma in the northeastern South China Sea (SCS), but varied slightly by 1-2 Myr along the northern continent-ocean boundary (COB). A southward ridge jump of ∼20 km occurred around 23.6 Ma in the East Subbasin; this timing also slightly varied along the ridge and was coeval to the onset of seafloor spreading in the Southwest Subbasin, which propagated for about 400 km southwestward from ∼23.6 to ∼21.5 Ma. The terminal age of seafloor spreading is ∼15 Ma in the East Subbasin and ∼16 Ma in the Southwest Subbasin. The full spreading rate in the East Subbasin varied largely from ∼20 to ∼80 km/Myr, but mostly decreased with time except for the period between ∼26.0 Ma and the ridge jump (∼23.6 Ma), within which the rate was the fastest at ∼70 km/Myr on average. The spreading rates are not correlated, in most cases, to magnetic anomaly amplitudes that reflect basement magnetization contrasts. Shipboard magnetic measurements reveal at least one magnetic reversal in the top 100 m of basaltic layers, in addition to large vertical intensity variations. These complexities are caused by late-stage lava flows that are magnetized in a different polarity from the primary basaltic layer emplaced during the main phase of crustal accretion. Deep tow magnetic modeling also reveals this smearing in basement magnetizations by incorporating a contamination coefficient of 0.5, which partly alleviates the problem of assuming a magnetic blocking model of constant thickness and uniform magnetization. The primary contribution to magnetic anomalies of the SCS is not in the top 100 m of the igneous basement.26 page(s
    corecore