57 research outputs found

    Vacuum ultraviolet photoabsorption spectra of nitrile ices for their identification on Pluto

    Get PDF
    Icy bodies, such as Pluto, are known to harbor simple and complex molecules. The recent New Horizons flyby of Pluto has revealed a complex surface composed of bright and dark ice surfaces, indicating a rich chemistry based on nitrogen (N2), methane (CH4), and carbon monoxide (CO). Nitrile (CN) containing molecules such as acetonitrile (CH3CN), propionitrile (CH3CH2CN), butyronitrile (CH3CH2CH2CN), and isobutyronitrile ((CH3)2CHCN) are some of the nitrile molecules that are known to be synthesized by radiative processing of such simple ices. Through the provision of a spectral atlas for such compounds we propose that such nitriles may be identified from the ALICE payload on board New Horizons</i

    Photometry of Kuiper belt object (486958) Arrokoth from New Horizons LORRI

    Get PDF
    On January 1st 2019, the New Horizons spacecraft flew by the classical Kuiper belt object (486958) Arrokoth (provisionally designated 2014 MU69), possibly the most primitive object ever explored by a spacecraft. The I/F of Arrokoth is analyzed and fit with a photometric function that is a linear combination of the Lommel-Seeliger (lunar) and Lambert photometric functions. Arrokoth has a geometric albedo of p_v = 0.21_(−0.04)^(+0.05) at a wavelength of 550 nm and ≈0.24 at 610 nm. Arrokoth's geometric albedo is greater than the median but consistent with a distribution of cold classical Kuiper belt objects whose geometric albedos were determined by fitting a thermal model to radiometric observations. Thus, Arrokoth's geometric albedo adds to the orbital and spectral evidence that it is a cold classical Kuiper belt object. Maps of the normal reflectance and hemispherical albedo of Arrokoth are presented. The normal reflectance of Arrokoth's surface varies with location, ranging from ≈0.10–0.40 at 610 nm with an approximately Gaussian distribution. Both Arrokoth's extrema dark and extrema bright surfaces are correlated to topographic depressions. Arrokoth has a bilobate shape and the two lobes have similar normal reflectance distributions: both are approximately Gaussian, peak at ≈0.25 at 610 nm, and range from ≈0.10–0.40, which is consistent with co-formation and co-evolution of the two lobes. The hemispherical albedo of Arrokoth varies substantially with both incidence angle and location, the average hemispherical albedo at 610 nm is 0.063 ± 0.015. The Bond albedo of Arrokoth at 610 nm is 0.062 ± 0.015

    Studying the [OIII]λ\lambda5007A emission-line width in a sample of ∼\sim80 local active galaxies: A surrogate for σ⋆\sigma_{\star}?

    Full text link
    For a sample of ∼\sim80 local (0.02≤z≤0.10.02 \leq z \leq 0.1) Seyfert-1 galaxies with high-quality long-slit Keck spectra and spatially-resolved stellar-velocity dispersion (σ⋆\sigma_{\star}) measurements, we study the profile of the [OIII]λ\lambda5007A emission line to test the validity of using its width as a surrogate for σ⋆\sigma_{\star}. Such an approach has often been used in the literature, since it is difficult to measure σ⋆\sigma_{\star} for type-1 active galactic nuclei (AGNs) due to the AGN continuum outshining the stellar-absorption lines. Fitting the [OIII] line with a single Gaussian or Gauss-Hermite polynomials overestimates σ⋆\sigma_{\star} by 50-100%. When line asymmetries from non-gravitational gas motion are excluded in a double Gaussian fit, the average ratio between the core [OIII] width (σ[OIII],D\sigma_{\rm {[OIII],D}}) and σ⋆\sigma_{\star} is ∼\sim1, but with individual data points off by up to a factor of two. The resulting black-hole-mass-σ[OIII],D\sigma_{\rm {[OIII],D}} relation scatters around that of quiescent galaxies and reverberation-mapped AGNs. However, a direct comparison between σ⋆\sigma_{\star} and σ[OIII],D\sigma_{\rm {[OIII],D}} shows no close correlation, only that both quantities have the same range, average and standard deviation, probably because they feel the same gravitational potential. The large scatter is likely due to the fact that line profiles are a luminosity-weighted average, dependent on the light distribution and underlying kinematic field. Within the range probed by our sample (80-260 km s−1^{-1}), our results strongly caution against the use of [OIII] width as a surrogate for σ⋆\sigma_{\star} on an individual basis. Even though our sample consists of radio-quiet AGNs, FIRST radio-detected objects have, on average, a ∼\sim10% larger [OIII] core width.Comment: 15 pages, 10 figures, 6 tables. Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Fading AGN candidates: AGN histories and outflow signatures

    Get PDF
    We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius \u3e 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Qion derived from photoionization balance in the brightest pixels in Hα at each projected radius. Tests using presumably constant Palomar–Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful histories of individual AGNs, with the caveat that the minimum ionizing luminosity is always an underestimate and subject to uncertainties about fine structure in the ionized material. These consistency tests suggest that the degree of underestimation from the upper envelope of reconstructed Qion values is roughly constant for a given object and therefore does not prevent such derivation. The AGNs in our sample show a range of behaviors, with rapid drops and standstills; the common feature is a rapid drop in the last ≈2 × 104 yr before the direct view of the nucleus. The e-folding timescales for ionizing luminosity are mostly in the thousands of years, with a few episodes as short as 400 yr. In the limit of largely obscured AGNs, we find additional evidence for fading from the shortfall between even the lower limits from recombination balance and the maximum luminosities derived from far-infrared fluxes. We compare these long-term light curves, and the occurrence of these fading objects among all optically identified AGNs, to simulations of AGN accretion; the strongest variations over these timespans are seen in models with strong and local (parsec-scale) feedback. We present Gemini integral-field optical spectroscopy, which shows a very limited role for outflows in these ionized structures. While rings and loops of emission, morphologically suggestive of outflow, are common, their kinematic structure shows some to be in regular rotation. UGC 7342 exhibits local signatures of outflows \u3c300 km s−1, largely associated with very diffuse emission, and possibly entraining gas in one of the clouds seen in Hubble Space Telescope images. Only in the Teacup AGN do we see outflow signatures of the order of 1000 km s−1. In contrast to the extended emission regions around many radio-loud AGNs, the clouds around these fading AGNs consist largely of tidal debris being externally illuminated but not displaced by AGN outflows

    Photometry of Kuiper belt object (486958) Arrokoth from New Horizons LORRI

    Get PDF
    On January 1st 2019, the New Horizons spacecraft flew by the classical Kuiper belt object (486958) Arrokoth (provisionally designated 2014 MU69), possibly the most primitive object ever explored by a spacecraft. The I/F of Arrokoth is analyzed and fit with a photometric function that is a linear combination of the Lommel-Seeliger (lunar) and Lambert photometric functions. Arrokoth has a geometric albedo of p_v = 0.21_(−0.04)^(+0.05) at a wavelength of 550 nm and ≈0.24 at 610 nm. Arrokoth's geometric albedo is greater than the median but consistent with a distribution of cold classical Kuiper belt objects whose geometric albedos were determined by fitting a thermal model to radiometric observations. Thus, Arrokoth's geometric albedo adds to the orbital and spectral evidence that it is a cold classical Kuiper belt object. Maps of the normal reflectance and hemispherical albedo of Arrokoth are presented. The normal reflectance of Arrokoth's surface varies with location, ranging from ≈0.10–0.40 at 610 nm with an approximately Gaussian distribution. Both Arrokoth's extrema dark and extrema bright surfaces are correlated to topographic depressions. Arrokoth has a bilobate shape and the two lobes have similar normal reflectance distributions: both are approximately Gaussian, peak at ≈0.25 at 610 nm, and range from ≈0.10–0.40, which is consistent with co-formation and co-evolution of the two lobes. The hemispherical albedo of Arrokoth varies substantially with both incidence angle and location, the average hemispherical albedo at 610 nm is 0.063 ± 0.015. The Bond albedo of Arrokoth at 610 nm is 0.062 ± 0.015
    • …
    corecore