7 research outputs found
COVID-19 During Development: A Matter of Concern
A new infectious disease, COVID-19, has spread around the world. The most common symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are cough and fever, but severe cases can develop acute respiratory distress syndrome. The main receptor for SARS-CoV-2 in human tissue is angiotensin-converting enzyme 2, and the lungs, heart, and kidneys are the most affected organs. Besides the inflammatory process and tissue damage, the presence of a cytokine "storm" has been related to a higher mortality rate. Other infectious viral diseases, such as Zika, chikungunya, and influenza, were associated with complications in pregnant women, such as growth restriction, malformation, preterm birth, low birth weight, miscarriage, and death, although they can also cause developmental disorders in infants and adolescents. Evidence points out that stressors during pregnancy and infancy may lead to the development of obesity, diabetes, and cardiovascular disease. Therefore, we hypothesize that COVID-19 infection during the critical phases of development can program the individual to chronic diseases in adulthood. It is important that COVID-19 patients receive proper monitoring as a way to avoid expensive costs to public health in the future
Protective Effect of Metformin Against Walker 256 Tumor Growth is Not Dependent on Metabolism Improvement
Background/Aims: The objective of the current work was to test the effect of metformin on the tumor growth in rats with metabolic syndrome. Methods: We obtained pre-diabetic hyperinsulinemic rats by neonatal treatment with monosodium L-glutamate (MSG), which were chronically treated every day, from weaning to 100 day old, with dose of metformin (250 mg/kg body weight). After the end of metformin treatment, the control and MSG rats, treated or untreated with metformin, were grafted with Walker 256 carcinoma cells. Tumor weight was evaluated 14 days after cancer cell inoculation. The blood insulin, glucose levels and glucose-induced insulin secretion were evaluated. Results: Chronic metformin treatment improved the glycemic homeostasis in pre-diabetic MSG-rats, glucose intolerance, tissue insulin resistance, hyperinsulinemia and decreased the fat tissue accretion. Meanwhile, the metformin treatment did not interfere with the glucose insulinotropic effect on isolated pancreatic islets. Chronic treatment with metformin was able to decrease the Walker 256 tumor weight by 37% in control and MSG rats. The data demonstrated that the anticancer effect of metformin is not related to its role in correcting metabolism imbalances, such as hyperinsulinemia. However, in morphological assay to apoptosis, metformin treatment increased programmed cell death. Conclusion: Metformin may have a direct effect on cancer growth, and it may programs the rat organism to attenuate the growth of Walker 256 carcinoma
Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats
Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55–65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation