11,919 research outputs found

    Drought-Stricken U.S. States Have More Comprehensive Water-Related Hazard Planning

    Get PDF

    On the use of a sunward-libration-point orbiting spacecraft as an IMF monitor for magnetospheric studies

    Get PDF
    Magnetospheric studies often require knowledge of the orientation of the IMF. In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point for this purpose, the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting Earth, has been calculated for a data set of two-hour periods covering four months. For each period, a ten-minute average of ISEE 1 data is compared with ten-minute averages of ISEE 3 data at successively lagged intervals. At the lag time equal to the time required for the solar wind to convect from ISEE 3 to ISEE 1, the median angle between the IMF orientation at the two spacecraft is 20 deg, and 80% of the cases have angles less than 38 deg. The results for the angles projected on the y-z plane are essentially the same

    Immorality and Irrationality

    Get PDF
    Does immorality necessarily involve irrationality? The question is often taken to be among the deepest in moral philosophy. But apparently deep questions sometimes admit of deflationary answers. In this case we can make way for a deflationary answer by appealing to dualism about rationality, according to which there are two fundamentally distinct notions of rationality: structural rationality and substantive rationality. I have defended dualism elsewhere. Here, I’ll argue that it allows us to embrace a sensible – I will not say boring – moderate view about the relationship between immorality and irrationality: roughly, that immorality involves substantive irrationality, but not structural irrationality. I defend this moderate view, and argue that many of the arguments for less moderate views turn either on missing the distinction between substantive and structural rationality, or on misconstruing it

    Medication adherence in patients with myotonic dystrophy and facioscapulohumeral muscular dystrophy

    Get PDF
    Myotonic dystrophy (DM) and facioscapulohumeral muscular dystrophy (FSHD) are the two most common adult muscular dystrophies and have progressive and often disabling manifestations. Higher levels of medication adherence lead to better health outcomes, especially important to patients with DM and FSHD because of their multisystem manifestations and complexity of care. However, medication adherence has not previously been studied in a large cohort of DM type 1 (DM1), DM type 2 (DM2), and FSHD patients. The purpose of our study was to survey medication adherence and disease manifestations in patients enrolled in the NIH-supported National DM and FSHD Registry. The study was completed by 110 DM1, 49 DM2, and 193 FSHD patients. Notable comorbidities were hypertension in FSHD (44 %) and DM2 (37 %), gastroesophageal reflux disease in DM1 (24 %) and DM2 (31 %) and arrhythmias (29 %) and thyroid disease (20 %) in DM1. Each group reported high levels of adherence based on regimen complexity, medication costs, health literacy, side effect profile, and their beliefs about treatment. Only dysphagia in DM1 was reported to significantly impact medication adherence. Approximately 35 % of study patients reported polypharmacy (taking 6 or more medications). Of the patients with polypharmacy, the DM1 cohort was significantly younger (mean 55.0 years) compared to DM2 (59.0 years) and FSHD (63.2 years), and had shorter disease duration (mean 26 years) compared to FSHD (26.8 years) and DM2 (34.8 years). Future research is needed to assess techniques to ease pill swallowing in DM1 and to monitor polypharmacy and potential drug interactions in DM and FSHD

    Electron and ion stagnation at the collision front between two laser produced plasmas

    Get PDF
    We report results from a combined optical interferometric and spectrally resolved imaging study on colliding laser produced aluminium plasmas. A Nomarski interferometer was used to probe the spatio-temporal distribution of electron densities at the collision front. Analysis of the resulting interferograms reveals the formation and evolution of a localized electron density feature with a well-defined profile reminiscent of a stagnation layer. Electron stagnation begins at a time delay of 10 ns after the peak of the plasma generating laser pulse. The peak electron density was found to exceed 10^19 cm^−3 and the layer remained well defined up to a time delay of ca 100 ns. Temporally and spectrally resolved optical imaging was also undertaken, to compare the Al^+ ion distribution with that of the 2D electron density profile. This revealed nascent stagnation of singly charged ions at a delay time of 20 ns. We attribute these results to the effects of space charge separation in the seed plasma plumes

    AN ACOUSTIC / RADAR SYSTEM FOR AUTOMATED DETECTION, LOCALIZATION, AND CLASSIFICATION OF BIRDS IN THE VICINITY OF AIRFIELDS

    Get PDF
    Bird-aircraft collisions present a significant threat to military and commercial aircraft, and as bird populations and air traffic continue to grow, and airport/airbase operations continue to expand, the problem will steadily get worse. To help mitigate bird strike hazards, we propose a multi-sensor system consisting of ground radar and acoustic sensors that can directly monitor bird activity and provide an alert when a threat condition occurs. Radar offers a large detection range and the ability to detect in all weather conditions, while acoustic sensors allow the ability to detect targets in the midst of clutter and add the capability to classify. A multi-sensor approach ensures that the system can provide bird strike monitoring capability in any situation with a low false alarm rate. As the Phase II effort of an Air Force STTR project, we have constructed and tested a microphone array adapted from state-of-the-art undersea warfare sensor technology that measures accurate angles to any acoustic source (broadband or narrowband) and a parabolic dish microphone which provides high-gain data on targets of interest. A test was conducted near Panama City / Bay County International Airport in conjunction with the Merlin Bird Detection Radar designed by DeTect, Inc. Results of this test will be presented and show that the acoustic array is capable of detecting, localizing in angle, and tracking multiple targets simultaneously, including birds, bats, aircraft, automobiles, people, and boats. The parabolic dish microphone was able to provide very high-gain acoustic data on several of these targets. The radar data was used as truth data for acoustic sensor performance evaluation and to determine situations in which the acoustic data can benefit the radar. Altogether, almost three days of continuous acoustic and radar data were collected, and analysis of these data show that the hybrid radar-acoustic system can provide bird strike avoidance capability

    AN ACOUSTIC / RADAR SYSTEM FOR AUTOMATED DETECTION, LOCALIZATION, AND CLASSIFICATION OF BIRDS IN THE VICINITY OF AIRFIELDS

    Get PDF
    Bird-aircraft collisions present a significant threat to military and commercial aircraft, and as bird populations and air traffic continue to grow, and airport/airbase operations continue to expand, the problem will steadily get worse. To help mitigate bird strike hazards, we propose a multi-sensor system consisting of ground radar and acoustic sensors that can directly monitor bird activity and provide an alert when a threat condition occurs. Radar offers a large detection range and the ability to detect in all weather conditions, while acoustic sensors allow the ability to detect targets in the midst of clutter and add the capability to classify. A multi-sensor approach ensures that the system can provide bird strike monitoring capability in any situation with a low false alarm rate. As the Phase II effort of an Air Force STTR project, we have constructed and tested a microphone array adapted from state-of-the-art undersea warfare sensor technology that measures accurate angles to any acoustic source (broadband or narrowband) and a parabolic dish microphone which provides high-gain data on targets of interest. A test was conducted near Panama City / Bay County International Airport in conjunction with the Merlin Bird Detection Radar designed by DeTect, Inc. Results of this test will be presented and show that the acoustic array is capable of detecting, localizing in angle, and tracking multiple targets simultaneously, including birds, bats, aircraft, automobiles, people, and boats. The parabolic dish microphone was able to provide very high-gain acoustic data on several of these targets. The radar data was used as truth data for acoustic sensor performance evaluation and to determine situations in which the acoustic data can benefit the radar. Altogether, almost three days of continuous acoustic and radar data were collected, and analysis of these data show that the hybrid radar-acoustic system can provide bird strike avoidance capability
    corecore