7 research outputs found

    Active surveillance should be considered for select men with Grade Group 2 prostate cancer

    No full text
    Abstract Background Treatment decisions for localized prostate cancer must balance patient preferences, oncologic risk, and preservation of sexual, urinary and bowel function. While Active Surveillance (AS) is the recommended option for men with Grade Group 1 (Gleason Score 3 + 3 = 6) prostate cancer without other intermediate-risk features, men with Grade Group 2 (Gleason Score 3 + 4 = 7) are typically recommended active treatment. For select patients, AS can be a possible initial management strategy for men with Grade Group 2. Herein, we review current urology guidelines and the urologic literature regarding recommendations and evidence for AS for this patient group. Main body AS benefits men with prostate cancer by maintaining their current quality of life and avoiding treatment side effects. AS protocols with close follow up always allow for an option to change course and pursue curative treatment. All the major guideline organizations now include Grade Group 2 disease with slightly differing definitions of eligibility based on risk using prostate-specific antigen (PSA) level, Gleason score, clinical stage, and other factors. Selected men with Grade Group 2 on AS have similar rates of deferred treatment and metastasis to men with Grade Group 1 on AS. There is a growing body of evidence from randomized controlled trials, large observational (prospective and retrospective) cohorts that confirm the oncologic safety of AS for these men. While some men will inevitably conclude AS at some point due to clinical reclassification with biopsy or imaging, some men may be able to stay on AS until transition to watchful waiting (WW). Magnetic resonance imaging is an important tool to confirm AS eligibility, to monitor progression and guide prostate biopsy. Conclusion AS is a viable initial management option for well-informed and select men with Grade Group 2 prostate cancer, low volume of pattern 4, and no other adverse clinicopathologic findings following a well-defined monitoring protocol. In the modern era of AS, urologists have tools at their disposal to better stage patients at initial diagnosis, risk stratify patients, and gain information on the biologic potential of a patient’s prostate cancer

    Loss of HNF6 expression correlates with human pancreatic cancer progression

    No full text
    Normal pancreatic epithelium progresses through various stages of pancreatic intraepithelial neoplasms (PanINs) in the development of pancreatic ductal adenocarcinoma (PDAC). Transcriptional regulation of this progression is poorly understood. In mouse, the Hnf6 transcription factor is expressed in ductal cells and at lower levels in acinar cells of the adult pancreas, but not in mature endocrine cells. Hnf6 is critical for terminal differentiation of the ductal epithelium during embryonic development and for pancreatic endocrine cell specification. We previously showed that, in mice, loss of Hnf6 from the pancreatic epithelium during organogenesis results in increased duct proliferation and altered duct architecture, increased periductal fibrosis and acinar-to-ductal metaplasia. Here we show that decreased expression of HNF6 is strongly correlated with increased severity of PanIN lesions in samples of human pancreata and is absent from >90% of PDAC. Mouse models in which cancer progression can be analyzed from the earliest stages that are seldom accessible in humans support a role for Hnf6 loss in progression from early to late stage PanIN and PDAC. In addition, gene expression analyses of human pancreatic cancer reveal decreased expression of HNF6 and its direct and indirect target genes compared to normal tissue and up-regulation of genes that act in opposition to HNF6 and its targets. The negative correlation between HNF6 expression and pancreatic cancer progression suggests that HNF6 maintains pancreatic epithelial homeostasis in humans, and that its loss contributes to the progression from PanIN to ductal adenocarcinoma. Insight on the role of HNF6 in pancreatic cancer development could lead to its use as a biomarker for early detection and prognosis
    corecore