46,172 research outputs found

    General study of superscaling in quasielastic (e,e′)(e,e') and (ν,μ)(\nu,\mu) reactions using the relativistic impulse approximation

    Get PDF
    The phenomenon of superscaling for quasielastic lepton induced reactions at energies of a few GeV is investigated within the framework of the relativistic impulse approximation. A global analysis of quasielastic inclusive electron and charged-current neutrino scattering reactions on nuclei is presented. Scaling and superscaling properties are shown to emerge from both types of processes. The crucial role played by final state interactions is evaluated by using different approaches. The asymmetric shape presented by the experimental scaling function, with a long tail in the region of positive values of the scaling variable, is reproduced when the interaction in the final state between the knockout nucleon and the residual nucleus is described within the relativistic mean field approach. The impact of gauge ambiguities and off-shell effects in the scaling function is also analyzed.Comment: 34 pages, 14 figures, accepted in Phys. Rev. C. Section II has been shortene

    Nonlinear stability and ergodicity of ensemble based Kalman filters

    Full text link
    The ensemble Kalman filter (EnKF) and ensemble square root filter (ESRF) are data assimilation methods used to combine high dimensional, nonlinear dynamical models with observed data. Despite their widespread usage in climate science and oil reservoir simulation, very little is known about the long-time behavior of these methods and why they are effective when applied with modest ensemble sizes in large dimensional turbulent dynamical systems. By following the basic principles of energy dissipation and controllability of filters, this paper establishes a simple, systematic and rigorous framework for the nonlinear analysis of EnKF and ESRF with arbitrary ensemble size, focusing on the dynamical properties of boundedness and geometric ergodicity. The time uniform boundedness guarantees that the filter estimate will not diverge to machine infinity in finite time, which is a potential threat for EnKF and ESQF known as the catastrophic filter divergence. Geometric ergodicity ensures in addition that the filter has a unique invariant measure and that initialization errors will dissipate exponentially in time. We establish these results by introducing a natural notion of observable energy dissipation. The time uniform bound is achieved through a simple Lyapunov function argument, this result applies to systems with complete observations and strong kinetic energy dissipation, but also to concrete examples with incomplete observations. With the Lyapunov function argument established, the geometric ergodicity is obtained by verifying the controllability of the filter processes; in particular, such analysis for ESQF relies on a careful multivariate perturbation analysis of the covariance eigen-structure.Comment: 38 page

    Well-Posedness And Accuracy Of The Ensemble Kalman Filter In Discrete And Continuous Time

    Get PDF
    The ensemble Kalman filter (EnKF) is a method for combining a dynamical model with data in a sequential fashion. Despite its widespread use, there has been little analysis of its theoretical properties. Many of the algorithmic innovations associated with the filter, which are required to make a useable algorithm in practice, are derived in an ad hoc fashion. The aim of this paper is to initiate the development of a systematic analysis of the EnKF, in particular to do so in the small ensemble size limit. The perspective is to view the method as a state estimator, and not as an algorithm which approximates the true filtering distribution. The perturbed observation version of the algorithm is studied, without and with variance inflation. Without variance inflation well-posedness of the filter is established; with variance inflation accuracy of the filter, with resepct to the true signal underlying the data, is established. The algorithm is considered in discrete time, and also for a continuous time limit arising when observations are frequent and subject to large noise. The underlying dynamical model, and assumptions about it, is sufficiently general to include the Lorenz '63 and '96 models, together with the incompressible Navier-Stokes equation on a two-dimensional torus. The analysis is limited to the case of complete observation of the signal with additive white noise. Numerical results are presented for the Navier-Stokes equation on a two-dimensional torus for both complete and partial observations of the signal with additive white noise

    A comparison of surface sensible and latent heat fluxes from aircraft and surface measurements in FIFE 1987

    Get PDF
    Surface fluxes of sensible and latent heat over a tall-grass prairie in central Kansas, as measured by 22 surface stations during FIFE 1987, are compared with values gained indirectly by linear extrapolation of aircraft-measured flux profiles to the surface. The results of 33 such comparisons covering the period 26 June to 13 October 1987 indicate that the sensible heat flux profiles were generally more linear with less scatter in the measurements at each level than were the latent heat flux profiles, the profile extrapolations of sensible heat flux in general underestimate the surface averages by about 30 percent, with slightly better agreement during periods of small flux, and the profile extrapolations of latent heat flux in general underestimate the surface averages by about 15 percent, with overestimates during periods of small fluxes (dry conditions) and overestimates during periods of large fluxes (moist conditions). Possible origins of the differences between the two sets of measurements are discussed, as directions for further research

    Wide energy-window view on the density of states and hole mobility of poly(p-phenylene vinylene)

    Get PDF
    Using an electrochemically gated transistor, we achieved controlled and reversible doping of poly(p-phenylene vinylene) in a large concentration range. Our data open a wide energy-window view on the density of states (DOS) and show, for the first time, that the core of the DOS function is Gaussian, while the low-energy tail has a more complex structure. The hole mobility increases by more than four orders of magnitude when the electrochemical potential is scanned through the DOS.Comment: 4 pages, 4 figure

    Abstract Tensor Systems as Monoidal Categories

    Full text link
    The primary contribution of this paper is to give a formal, categorical treatment to Penrose's abstract tensor notation, in the context of traced symmetric monoidal categories. To do so, we introduce a typed, sum-free version of an abstract tensor system and demonstrate the construction of its associated category. We then show that the associated category of the free abstract tensor system is in fact the free traced symmetric monoidal category on a monoidal signature. A notable consequence of this result is a simple proof for the soundness and completeness of the diagrammatic language for traced symmetric monoidal categories.Comment: Dedicated to Joachim Lambek on the occasion of his 90th birthda

    Development of biaxial test fixture includes cryogenic application

    Get PDF
    Test fixture has the capability of producing biaxial stress fields in test specimens to the point of failure. It determines biaxial stress by dividing the applied load by the net cross section. With modification it can evaluate materials, design concepts, and production hardware at cryogenic temperatures

    Unmasking quality: exploring meanings of health by doing art

    Get PDF
    This paper arises from a presentation at the ‘Quality in Healthcare’ symposium at Cumberland Lodge, England, in 2013. MK, CR and SH conceived the paper and led the writing of the manuscript. JF, JL-D, AC, DE contributed substantially to the intellectual content of the paper through providing critical commentary and interpretation. All authors read and approved the final manuscript
    • …
    corecore