920 research outputs found

    Diversity in lac Operon Regulation among Diverse Escherichia coli Isolates Depends on the Broader Genetic Background but Is Not Explained by Genetic Relatedness

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Transcription of bacterial genes is controlled by the coordinated action of cis- and trans-acting regulators. The activity and mode of action of these regulators can reflect different requirements for gene products in different environments. A well-studied example is the regulatory function that integrates the environmental availability of glucose and lactose to control the Escherichia coli lac operon. Most studies of lac operon regulation have focused on a few closely related strains. To determine the range of natural variation in lac regulatory function, we introduced a reporter construct into 23 diverse E. coli strains and measured expression with combinations of inducer concentrations. We found a wide range of regulatory functions. Several functions were similar to the one observed in a reference lab strain, whereas others depended weakly on the presence of cAMP. Some characteristics of the regulatory function were explained by the genetic relatedness of strains, indicating that differences varied on relatively short time scales. The regulatory characteristics explained by genetic relatedness were among those that best predicted the initial growth of strains following transition to a lactose environment, suggesting a role for selection. Finally, we transferred the lac operon, with the lacI regulatory gene, from five natural isolate strains into a reference lab strain. The regulatory function of these hybrid strains revealed the effect of local and global regulatory elements in controlling expression. Together, this work demonstrates that regulatory functions can be varied within a species and that there is variation within a species to best match a function to particular environments

    Descriptive Analysis of a Baseline Concussion Battery Among U.S. Service Academy Members: Results from the Concussion Assessment, Research, and Education (CARE) Consortium

    Get PDF
    Introduction The prevalence and possible long-term consequences of concussion remain an increasing concern to the U.S. military, particularly as it pertains to maintaining a medically ready force. Baseline testing is being used both in the civilian and military domains to assess concussion injury and recovery. Accurate interpretation of these baseline assessments requires one to consider other influencing factors not related to concussion. To date, there is limited understanding, especially within the military, of what factors influence normative test performance. Given the significant physical and mental demands placed on service academy members (SAM), and their relatively high risk for concussion, it is important to describe demographics and normative profile of SAMs. Furthermore, the absence of available baseline normative data on female and non-varsity SAMs makes interpretation of post-injury assessments challenging. Understanding how individuals perform at baseline, given their unique individual characteristics (e.g., concussion history, sex, competition level), will inform post-concussion assessment and management. Thus, the primary aim of this manuscript is to characterize the SAM population and determine normative values on a concussion baseline testing battery. Materials and Methods All data were collected as part of the Concussion Assessment, Research and Education (CARE) Consortium. The baseline test battery included a post-concussion symptom checklist (Sport Concussion Assessment Tool (SCAT), psychological health screening inventory (Brief Symptom Inventory (BSI-18) and neurocognitive evaluation (ImPACT), Balance Error Scoring System (BESS), and Standardized Assessment of Concussion (SAC). Linear regression models were used to examine differences across sexes, competition levels, and varsity contact levels while controlling for academy, freshman status, race, and previous concussion. Zero inflated negative binomial models estimated symptom scores due to the high frequency of zero scores. Results Significant, but small, sex effects were observed on the ImPACT visual memory task. While, females performed worse than males (p < 0.0001, pη2 = 0.01), these differences were small and not larger than the effects of the covariates. A similar pattern was observed for competition level on the SAC. There was a small, but significant difference across competition level. SAMs participating in varsity athletics did significantly worse on the SAC compared to SAMs participating in club or intramural athletics (all p’s < 0.001, η2 = 0.01). When examining symptom reporting, males were more than two times as likely to report zero symptoms on the SCAT or BSI-18. Intramural SAMs had the highest number of symptoms and severity compared to varsity SAMs (p < 0.0001, Cohen’s d < 0.2). Contact level was not associated with SCAT or BSI-18 symptoms among varsity SAMs. Notably, the significant differences across competition level on SCAT and BSI-18 were sub-clinical and had small effect sizes. Conclusion The current analyses provide the first baseline concussion battery normative data among SAMs. While statistically significant differences may be observed on baseline tests, the effect sizes for competition and contact levels are very small, indicating that differences are likely not clinically meaningful at baseline. Identifying baseline differences and significant covariates is important for future concussion-related analyses to inform concussion evaluations for all athlete levels

    Weaving an Assurance Case from Design: A Model-Based Approach

    Get PDF
    Assurance cases are used to demonstrate confidence in properties of interest for a system, e.g. For safety or security. A model-based assurance case seeks to bring the benefits of model-driven engineering, such as automation, transformation and validation, to what is currently a lengthy and informal process. In this paper we develop a model-based assurance approach, based on a weaving model, which allows integration between assurance case, design and process models and meta-models. In our approach, the assurance case itself is treated as a structured model, with the aim that all entities in the assurance case become linked explicitly to the models that represent them. We show how it is possible to exploit the weaving model for automated generation of assurance cases. Building upon these results, we discuss how a seamless model-driven approach to assurance cases can be achieved and examine the utility of increased formality and automation

    The effects of particle-induced oxidative damage from exposure to airborne fine particulate matter components in the vicinity of landfill sites on Hong Kong

    Get PDF
    The physical, chemical and bioreactivity characteristics of fine particulate matter (PM2.5) collected near (<1 km) two landfill sites and downwind urban sites were investigated. The PM2.5 concentrations were significantly higher in winter than summer. Diurnal variations of PM2.5 were recorded at both landfill sites. Soot aggregate particles were identified near the landfill sites, which indicated that combustion pollution due to landfill activities was a significant source. High correlation coefficients (r) implied several inorganic elements and water-soluble inorganic ions (vanadium (V), copper (Cu), chloride (Cl−), nitrate (NO3−), sodium (Na) and potassium (K)) were positively associated with wind flow from the landfill sites. Nevertheless, no significant correlations were also identified between these components against DNA damage. Significant associations were observed between DNA damage and some heavy metals such as cadmium (Cd) and lead (Pb), and total Polycyclic Aromatic Hydrocarbons (PAHs) during the summer. The insignificant associations of DNA damage under increased wind frequency from landfills suggested that the PM2.5 loading from sources such as regional sources was possibly an important contributing factor for DNA damage. This outcome warrants the further development of effective and source-specific landfill management regulations for particulate matter production control to the city

    Bottomonium in the plasma: Lattice results

    Get PDF
    We present results on the heavy quarkonium spectrum and spectral functions obtained by performing large-scale simulations of QCD for temperatures ranging from about 100 to 500 MeV, in the same range as those explored by LHC experiments. We discuss our method and perspectives for further improvements towards the goal of full control over the many systematic uncertainties of these studies

    Increased Oxidative Burden Associated with Traffic Component of Ambient Particulate Matter at Roadside and Urban Background Schools Sites in London

    Get PDF
    As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP). Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM) samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OPAA m−3) and glutathione (OPGSH m−3) depletion, the highest OP per cubic metre of air was in the largest size fraction, PM1.9–10.2. However, when expressed per unit mass of particles OPAA µg−1 showed no significant dependence upon particle size, while OPGSH µg−1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V) or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between site types.\ud \u

    A cohort study to identify and evaluate concussion risk factors across multiple injury settings: findings from the CARE Consortium

    Get PDF
    BACKGROUND: Concussion, or mild traumatic brain injury, is a major public health concern affecting 42 million individuals globally each year. However, little is known regarding concussion risk factors across all concussion settings as most concussion research has focused on only sport-related or military-related concussive injuries. METHODS: The current study is part of the Concussion, Assessment, Research, and Education (CARE) Consortium, a multi-site investigation on the natural history of concussion. Cadets at three participating service academies completed annual baseline assessments, which included demographics, medical history, and concussion history, along with the Sport Concussion Assessment Tool (SCAT) symptom checklist and Brief Symptom Inventory (BSI-18). Clinical and research staff recorded the date and injury setting at time of concussion. Generalized mixed models estimated concussion risk with service academy as a random effect. Since concussion was a rare event, the odds ratios were assumed to approximate relative risk. RESULTS: Beginning in 2014, 10,604 (n = 2421, 22.83% female) cadets enrolled over 3 years. A total of 738 (6.96%) cadets experienced a concussion, 301 (2.84%) concussed cadets were female. Female sex and previous concussion were the most consistent estimators of concussion risk across all concussion settings. Compared to males, females had 2.02 (95% CI: 1.70-2.40) times the risk of a concussion regardless of injury setting, and greater relative risk when the concussion occurred during sport (Odds Ratio (OR): 1.38 95% CI: 1.07-1.78). Previous concussion was associated with 1.98 (95% CI: 1.65-2.37) times increased risk for any incident concussion, and the magnitude was relatively stable across all concussion settings (OR: 1.73 to 2.01). Freshman status was also associated with increased overall concussion risk, but was driven by increased risk for academy training-related concussions (OR: 8.17 95% CI: 5.87-11.37). Medical history of headaches in the past 3 months, diagnosed ADD/ADHD, and BSI-18 Somatization symptoms increased overall concussion risk. CONCLUSIONS: Various demographic and medical history factors are associated with increased concussion risk. While certain factors (e.g. sex and previous concussion) are consistently associated with increased concussion risk, regardless of concussion injury setting, other factors significantly influence concussion risk within specific injury settings. Further research is required to determine whether these risk factors may aid in concussion risk reduction or prevention
    corecore