8,985 research outputs found

    Bilayer Quantum Hall Systems at nuT = 1: Coulomb Drag and the Transition from Weak to Strong Interlayer Coupling

    Get PDF
    Measurements revealing anomalously large frictional drag at the transition between the weakly and strongly coupled regimes of a bilayer two-dimensional electron system at total Landau level filling factor nuT = 1 are reported. This result suggests the existence of fluctuations, either static or dynamic, near the phase boundary separating the quantized Hall state at small layer separations from the compressible state at larger separations. Interestingly, the anomalies in drag seem to persist to larger layer separations than does interlayer phase coherence as detected in tunneling

    Double layer two-dimensional electron systems: Probing the transition from weak to strong coupling with Coulomb drag

    Get PDF
    Frictional drag measurements revealing anomalously large dissipation at the transition between the weakly- and strongly-coupled regimes of a bilayer two-dimensional electron system at total Landau level filling factor νT=1\nu_T =1 are reported. This result suggests the existence of fluctuations, either static or dynamic, near the phase boundary separating the quantized Hall state at small layer separations from the compressible state at larger separations. Interestingly, the anomalies in drag seem to persist to larger layer separations than does interlayer phase coherence as detected in tunneling.Comment: 4 pages, 4 figure

    Solar Wind Electric Fields in the Ion Cyclotron Frequency Range

    Full text link
    Measurements of fluctuations of electric fields in the frequency range from a fraction of one Hz to 12.5 Hz are presented, and corrected for the Lorentz transformation of magnetic fluctuations to give the electric fields in the plasma frame. The electric fields are large enough to provide the dominant force on the ions of the solar wind in the region near the ion cyclotron frequency of protons, larger than the force due to magnetic fluctuations. They provide sufficient velocity space diffusion or heating to counteract conservation of magnetic moment in the expanding solar wind to maintain nearly isotropic velocity distributions

    Vanishing Hall Resistance at High Magnetic Field in a Double Layer Two-Dimensional Electron System

    Get PDF
    At total Landau level filling factor νtot=1\nu_{tot}=1 a double layer two-dimensional electron system with small interlayer separation supports a collective state possessing spontaneous interlayer phase coherence. This state exhibits the quantized Hall effect when equal electrical currents flow in parallel through the two layers. In contrast, if the currents in the two layers are equal, but oppositely directed, both the longitudinal and Hall resistances of each layer vanish in the low temperature limit. This finding supports the prediction that the ground state at νtot=1\nu_{tot}=1 is an excitonic superfluid.Comment: 4 pages, 4 figure

    Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence

    Full text link
    Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show the spectral behavior of classical Kolmogorov fluid turbulence over an inertial subrange and departures from this at short wavelengths, where energy should be dissipated. Here we present the first measurements of the electric field fluctuation spectrum over the inertial and dissipative wavenumber ranges in a β1\beta \gtrsim 1 plasma. The k5/3k^{-5/3} inertial subrange is observed and agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed in this regime is shown to be consistent with the Alfv\'en speed. At smaller wavelengths kρi1k \rho_i \geq 1 the electric spectrum is softer and is consistent with the expected dispersion relation of short-wavelength kinetic Alfv\'en waves. Kinetic Alfv\'en waves damp on the solar wind ions and electrons and may act to isotropize them. This effect may explain the fluid-like nature of the solar wind.Comment: submitted; 4 pages + 3 figure

    Onset of Interlayer Phase Coherence in a Bilayer Two-Dimensional Electron System: Effect of Layer Density Imbalance

    Get PDF
    Tunneling and Coulomb drag are sensitive probes of spontaneous interlayer phase coherence in bilayer two-dimensional electron systems at total Landau level filling factor νT=1\nu_T = 1. We find that the phase boundary between the interlayer phase coherent state and the weakly-coupled compressible phase moves to larger layer separations as the electron density distribution in the bilayer is imbalanced. The critical layer separation increases quadratically with layer density difference.Comment: 4 pages, 3 figure

    VETA-I x ray test analysis

    Get PDF
    This interim report presents some definitive results from our analysis of the VETA-I x-ray testing data. It also provides a description of the hardware and software used in the conduct of the VETA-I x-ray test program performed at the MSFC x-ray Calibration Facility (XRCF). These test results also serve to supply data and information to include in the TRW final report required by DPD 692, DR XC04. To provide an authoritative compendium of results, we have taken nine papers as published in the SPIE Symposium, 'Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography' and have reproduced them as the content of this report

    Correcting x ray spectra obtained from the AXAF VETA-I mirror calibration for pileup, continuum, background and deadtime

    Get PDF
    The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters correcting for the reflectivity of the mirror and convolving with the detector response

    Spacecraft charging and ion wake formation in the near-Sun environment

    Full text link
    A three-dimensional (3-D), self-consistent code is employed to solve for the static potential structure surrounding a spacecraft in a high photoelectron environment. The numerical solutions show that, under certain conditions, a spacecraft can take on a negative potential in spite of strong photoelectron currents. The negative potential is due to an electrostatic barrier near the surface of the spacecraft that can reflect a large fraction of the photoelectron flux back to the spacecraft. This electrostatic barrier forms if (1) the photoelectron density at the surface of the spacecraft greatly exceeds the ambient plasma density, (2) the spacecraft size is significantly larger than local Debye length of the photoelectrons, and (3) the thermal electron energy is much larger than the characteristic energy of the escaping photoelectrons. All of these conditions are present near the Sun. The numerical solutions also show that the spacecraft's negative potential can be amplified by an ion wake. The negative potential of the ion wake prevents secondary electrons from escaping the part of spacecraft in contact with the wake. These findings may be important for future spacecraft missions that go nearer to the Sun, such as Solar Orbiter and Solar Probe Plus.Comment: 25 pages, 7 figures, accepted for publication in Physics of Plasma
    corecore