15,506 research outputs found

    Optimal symmetric flight with an intermediate vehicle model

    Get PDF
    Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems

    Determination of MIC and Disk Diffusion Quality Control Guidelines for Meropenem–Vaborbactam, a Novel Carbapenem/Boronic Acid β-Lactamase Inhibitor Combination

    Get PDF
    Meropenem–vaborbactam is a carbapenem/cyclic boronic acid β-lactamase inhibitor combination primarily active against Gram-negative bacilli, including those harboring class A serine carbapenemases such as Klebsiella pneumoniae carbapenemase (KPC). A Clinical and Laboratory Standards Institute M23-A4 (Tier 2) quality control study established broth microdilution and disk diffusion ranges for reference strains. Two KPC-producing K. pneumoniae ATCC strains are recommended for quality control testing

    Climb-dash real-time calculations

    Get PDF
    On-board rear-optimal climb-dash energy management, optimal symmetric flight with an intermediate vehicle model, and energy states are presented

    Optimal symmetric flight studies

    Get PDF
    Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory

    Communications systems technology assessment study. Volume 2: Results

    Get PDF
    The cost and technology characteristics are examined for providing special satellite services at UHF, 2.5 GHz, and 14/12 GHz. Considered are primarily health, educational, informational and emergency disaster type services. The total cost of each configuration including space segment, earth station, installation operation and maintenance was optimized to reduce the user's total annual cost and establish preferred equipment performance parameters. Technology expected to be available between now and 1985 is identified and comparisons made between selected alternatives. A key element of the study is a survey of earth station equipment updating past work in the field, providing new insight into technology, and evaluating production and test methods that can reduce costs in large production runs. Various satellite configurations were examined. The cost impact of rain attenuation at Ku-band was evaluated. The factors affecting the ultimate capacity achievable with the available orbital arc and available bandwidth were analyzed

    Detection of quantum light in the presence of noise

    Full text link
    Detection of quantum light in the presence of dark counts and background radiation noise is considered. The corresponding positive operator-valued measure is obtained and photocounts statistics of quantum light in the presence of noise is studied.Comment: 4 pages, 1 figure; misprints correcte

    Arkansas Wheat Cultivar Performance Tests 2010-2011

    Get PDF
    Wheat cultivar performance tests are conducted each year in Arkansas by the Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and/or marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers

    Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin

    Get PDF
    Heavy noble gases (Ne, Ar, Xe) can record long-lasting heterogeneities in the mantle because of the production of isotopes from extant (238U, 40K) and extinct (129I and 244Pu)13 radionuclides. However, the presence of ubiquitous atmospheric contamination, particularly for ocean island basalts (OIBs) that sample the Earth’s deep mantle, have largely hampered precise characterization of the mantle source compositions. Here we present new high-precision noble gas data from gas-rich basalts erupted along the Rochambeau Rift in the northwestern corner of the Lau Basin. The strong influence of a deep mantle plume in the Rochambeau source is apparent from low 4He/3He ratios down to 25,600 (3He/4He of 28.1 RA). We find that the Rochambeau source is characterized by low ratios of radiogenic to non-radiogenic nuclides of Ne, Ar, and Xe (i.e., low 21Ne/22Ne, 40Ar/36Ar, and 129Xe/130Xe) compared to the mantle source of mid-ocean ridge basalts (MORBs). Additionally, we observe differences in elemental abundance patterns between the Rochambeau source and the mantle source of MORBs as characterized by the gas-rich popping rock from the Mid-Atlantic Ridge. However, the 3He/22Ne ratio of the Rochambeau plume source is significantly higher than the Iceland and Galapagos plume sources, while the 3He/36Ar and 3He/130Xe ratios appear to be similar. The difference in 3He/22Ne between Rochambeau and the Galapagos and Iceland plume sources could reflect long lasting accretional heterogeneities in the deep mantle or some characteristic of the back-arc mantle source. High-precision xenon isotopic measurements indicate that the lower 129Xe/130Xe ratios in the Rochambeau source cannot be explained solely by mixing atmospheric xenon with MORB31 type xenon; nor can fission-produced Xe be added to MORB Xe to produce the compositions seen in the Rochambeau basalts. Deconvolution of fissiogenic xenon isotopes demonstrate a higher proportion of Pu-derived fission Xe in the Rochambeau 33 source compared to the MORB source. Therefore, both I/Xe and Pu/Xe ratios are different between OIB and MORB mantle sources. Our observations require heterogeneous volatile accretion and a lower degree of processing for the mantle plume source compared to the MORB source. Since differences in 129Xe/130Xe ratios have to be produced while 129I is still alive, OIB and MORB sources were degassed at different rates for the first 100 Ma of Solar System history, and subsequent to this period, the two reservoirs have not been homogenized. In combination with recent results from the Iceland plume, our observations require the preservation of less-degassed, early-formed heterogeneities in the Earth’s deep mantle throughout Earth’s history

    Variations in Fe\u3csup\u3e3+\u3c/sup\u3e/∑Fe of Mariana Arc Basalts and Mantle Wedge \u3cem\u3ef\u3c/em\u3eO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Arc basalts are more oxidized than mid-ocean ridge basalts, but it is unclear whether this difference is due to differentiation processes in the Earth’s crust or to a fundamental difference in the oxygen fugacity of their mantle sources. Distinguishing between these two hypotheses is important for understanding redox-sensitive processes related to arc magmatism, and thus more broadly how Earth materials cycle globally. We present major, volatile, and trace element concentrations in combination with Fe3+/∑Fe ratios determined in olivine-hosted glass inclusions and submarine glasses from five Mariana arc volcanoes and two regions of the Mariana Trough. For single eruptions, Fe3+/∑Fe ratios vary along liquid lines of descent that are either slightly oxidizing (olivine + clinopyroxene + plagioclase fractionation, CO2 ± H2O degassing) or reducing (olivine + clinopyroxene + plagioclase ± magnetite fractionation, CO2 + H2O + S degassing). Mariana samples are consistent with a global relationship between calc-alkaline affinity and both magmatic H2O and magmatic oxygen fugacity, where wetter, higher oxygen fugacity magmas display greater affinity for calc-alkaline differentiation. We find, however, that low-pressure differentiation cannot explain the majority of variations observed in Fe3+/∑Fe ratios for Mariana arc basalts, requiring primary differences in magmatic oxygen fugacity. Calculated oxygen fugacities of primary mantle melts at the pressures and temperatures of melt segregation are significantly oxidized relative to mid-ocean ridge basalts (∼QFM, where QFM is quartz–fayalite–magnetite buffer), ranging from QFM + 1·0 to QFM + 1·6 for Mariana arc basalts, whereas back-arc related samples record primary oxygen fugacities that range from QFM + 0·1 to QFM + 0·5. This Mariana arc sample suite includes a diversity of subduction influences, from lesser influence of a homogeneous H2O-rich component in the back-arc, to sediment melt- and fluid-dominated influences along the arc. Primary melt oxygen fugacity does not correlate significantly with sediment melt contributions (e.g. Th/La), nor can it be attributed to previous melt extraction in the back-arc. Primary melt oxygen fugacity correlates strongly with indices of slab fluids (e.g. Ba/La) from the Mariana Trough through the Mariana arc, increasing by 1·5 orders of magnitude as Ba/La increases by a factor of 10 relative to mid-ocean ridge basalts. These results suggest that contributions from the slab to the mantle wedge may be responsible for the elevated oxygen fugacity recorded by Mariana arc basalts and that slab fluids are potentially very oxidized
    corecore