986 research outputs found

    Genome Sequence of the Halophilic Bacterium Kangiella spongicola ATCC BAA-2076T

    Get PDF
    The Gram-negative genus Kangiella contains a number of halophilic species that display high levels of iso-branched fatty acids. Kangiella spongicola was isolated from a marine sponge, Chondrilla nucula, from the Florida Keys in the United States. A genome assembly of 2,825,399 bp with a 44.31% G+C content was generated from strain A79T (=ATCC BAA-2076T)

    Discrepant Alcohol Use, Intimate Partner Violence, and Relationship Adjustment Among Lesbian Women and Their Same-Sex Intimate Partners

    Get PDF
    This study examined the association between relationship adjustment and discrepant alcohol use among lesbian women and their same-sex intimate partners after controlling for verbal and physical aggression. Lesbian women (N = 819) who were members of online marketing research panels completed an online survey in which they reported both their own and same-sex intimate partner\u27s alcohol use, their relationship adjustment, and their own and their partner\u27s physical aggression and psychological aggression (i.e., verbal aggression and dominance/isolation). Partners\u27 alcohol use was moderately correlated. Discrepancy in alcohol use was associated with poorer relationship adjustment after controlling for psychological aggression and physical aggression. Results are discussed in terms of the similarity and differences with previous literature primarily focused on heterosexual couples

    Empirical Investigation of a Model of Sexual Minority Specific and General Risk Factors for Intimate Partner Violence Among Lesbian Women

    Get PDF
    Objective: This study proposed and tested the first conceptual model of sexual minority specific (discrimination, internalized homophobia) and more general risk factors (perpetrator and partner alcohol use, anger, relationship satisfaction) for intimate partner violence among partnered lesbian women. Method: Selfidentified lesbian women (N = 1,048) were recruited from online market research panels. Participants completed an online survey that included measures of minority stress, anger, alcohol use and alcohol-related problems, relationship satisfaction, psychological aggression, and physical violence. Results: The model demonstrated good fit and significant links from sexual minority discrimination to internalized homophobia and anger, from internalized homophobia to anger and alcohol problems, and from alcohol problems to intimate partner violence. Partner alcohol use predicted partner physical violence. Relationship dissatisfaction was associated with physical violence via psychological aggression. Physical violence was bidirectional. Conclusions: Minority stress, anger, alcohol use, and alcohol-related problems play an important role in perpetration of psychological aggression and physical violence in lesbian women\u27s intimate partner relationships. The results of this study provide evidence of potentially modifiable sexual minority specific and more general risk factors for lesbian women\u27s partner violence

    Progress on Gust Load Alleviation Wind Tunnel Experiment and Aeroservoelastic Model Validation for a Flexible Wing with Variable Camber Continuous Trailing Edge Flap System

    Get PDF
    This paper discusses a wind tunnel experiment of active gust load alleviation of a flexible wing which took place at University of Washington (UW) in 2019. The experiment performed under a NASA SBIR contract with Scientific Systems Company, Inc (SSCI). The objective of the experiment is to demonstrate active controls of the Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for gust load alleviation and real-time drag optimization. The wind tunnel model is a 8.2% sub-scale Common Research Model (CRM) wing. The wing structure is designed to provide a substantial degree of flexibility to represent that of a modern high-aspect ratio wing. Eight active control surfaces are employed in the VCCTEF. A new gust generator system was designed and installed by UW under a sub-contract with SSCI. The first test entry started in July 2019 and ended in September 2019. During this test entry, many significant issues were found with the hardware and software. The significant issues with the servos prevented the test objective from being completed. A follow-up second test entry in 2020 is being planned. The wing system is being repaired by SSCI. This paper reports on the progress of this experimental effort and the aeroservoelastic (ASE) model validation which was conducted during the test entry

    Draft Genome Sequence of the Psychrotolerant Bacterium Kurthia sibirica ATCC 49154T

    Get PDF
    The aerobic, Gram-positive, psychrotolerant bacterium Kurthia sibirica was first isolated from the stomach and intestinal contents of the Magadan mammoth recovered from the permafrost in eastern Siberia in 1977. K. sibirica was sequenced, and the predicted genome size is 3,496,665 bp, with 36.42% G+C content

    Preprocessing Among the Infalling Galaxy Population of EDisCS Clusters

    Get PDF
    We present results from a low-resolution spectroscopic survey for 21 galaxy clusters at 0.4<z<0.80.4 < z < 0.8 selected from the ESO Distant Cluster Survey. We measured spectra using the low-dispersion prism in IMACS on the Magellan Baade telescope and calculate redshifts with an accuracy of σz=0.007\sigma_z = 0.007. We find 1763 galaxies that are brighter than R=22.9R = 22.9 in the large-scale cluster environs. We identify the galaxies expected to be accreted by the clusters as they evolve to z=0z = 0 using spherical infall models and find that ∼30%\sim30\% to ∼70%\sim70\% of the z=0z = 0 cluster population lies outside the virial radius at z∼0.6z \sim 0.6. For analogous clusters at z=0z = 0, we calculate that the ratio of galaxies that have fallen into the clusters since z∼0.6z \sim 0.6 to those that were already in the core at that redshift is typically between ∼0.3\sim0.3 and 1.51.5. This wide range of ratios is due to intrinsic scatter and is not a function of velocity dispersion, so a variety of infall histories is to be expected for clusters with current velocity dispersions of 300≲σ≲1200300 \lesssim\sigma\lesssim 1200 km s−1^{-1}. Within the infall regions of z∼0.6z \sim 0.6 clusters, we find a larger red fraction of galaxies than in the field and greater clustering among red galaxies than blue. We interpret these findings as evidence of "preprocessing", where galaxies in denser local environments have their star formation rates affected prior to their aggregation into massive clusters, although the possibility of backsplash galaxies complicates the interpretation.Comment: Accepted for publication in Ap

    Real-Time Adaptive Drag Minimization Wind Tunnel Investigation of a Flexible Wing with Variable Camber Continuous Trailing Edge Flap System

    Get PDF
    This paper reports the results of a recently completed real-time adaptive drag minimization wind tunnel investigation of a highly flexible wing wind tunnel model equipped with the Variable Camber Continuous Trailing Flap (VCCTEF) technology at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel investigation is funded by NASA SBIR Phase II contract with Scientific Systems Company, Inc. (SSCI) and University of Washington (UW) as a subcontractor. The wind tunnel model is a sub-scale Common Research Model (CRM) wing constructed of foam core and fiberglass skin and is aeroelastically scaled to achieve a wing tip deflection of 10% of the wing semi-span which represents a typical wing tip deflection for a modern transport such as Boeing 787. The jig-shape twist of the CRM wing is optimized using a CART3D aero-structural model to achieve the minimum induced drag for the design cruise lift coefficient of 0.5. The wing is equipped with two chord wise cambered segments for each of the six span wise flap sections for a total of 12 individual flap segments that comprise the VCCTEF system. Each of the 12 flap segments is actively controlled by an electric servo-actuator. The real-time adaptive drag optimization strategy includes an on-board aerodynamic model identification, a model excitation, and a real-time drag optimization. The on-board aerodynamic model is constructed parametrically as a function of the angle of attack and flap positions to model the lift and drag coefficients of the wing. The lift coefficient models include a linear model and a second-order model. The drag coefficient models include a quadratic model and a higher-order up to 6th-order model to accurately model the drag coefficient at high angles of attack. The onboard aerodynamic model identification includes a recursive least-squares (RLS) algorithm and a batch least-squares (BLS) algorithm designed to estimate the model parameters. The model excitation method is designed to sample the input set that comprises the angle of attack and the flap positions. Three model excitation methods are developed: random excitation method, sweep method, and iterative angle-of-attack seeking method. The real-time drag optimization includes a generic algorithm developed by SSCI and several optimization methods developed by NASA which include a second-order gradient Newton-Raphson optimization method, an iterative gradient optimization method, a pseudo-inverse optimization method, an analytical optimization method, and an iterative refinement optimization method. The first wind tunnel test entry took place in September 2017. This test revealed major hardware issues and required further redesign of the flap servo mechanisms. The second test entry took place in April 2018. However, the test was not successful due to the issues with the onboard aerodynamic model identification RLS algorithm which incorrectly identified model parameters. This test also provides an experimental comparison study between the VCCTEF and a variable camber discrete trailing edge flap (VCDTEF) without the elastomer transition mechanisms. The experimental result confirms the benefit of the VCCTEF which produces lower drag by 5% than the VCDTEF. The third and final test entry took place in June 2018 after the issues with the RLS algorithm have been identified and corrected. Additional improvements were implemented. These include the BLS algorithm, the iterative angle-of-attack seeking method, the iterative gradient optimization method, and the pseudo-inverse optimization method. The test objectives were successfully demonstrated as the real-time drag optimization identifies several optimal solutions at off-design lift coefficients. The iterative gradient optimization method is found to achieve up to 4.7% drag reduction for the off-design lift coefficient of 0.7. The pseudo-inverse optimization method which does not require the drag coefficient model is found to be quite effective in reducing drag. Up to 9.4% drag reduction for the off-design lift coefficient of 0.7 is achieved with the pseudo-inverse optimization method. The wind tunnel investigation demonstrates the potential of real-time drag optimization technology. Several new capabilities are developed that could enable future adaptive wing technologies for flexible wings equipped with drag control devices such as the VCCTEF
    • …
    corecore