1,114 research outputs found

    Blowtooth: a provocative pervasive game for smuggling virtual drugs through real airport security

    Get PDF
    In this paper we describe a pervasive game, Blowtooth, in which players use their mobile phones to hide virtual drugs on nearby airline passengers in real airport check-in queues. After passing through airport security, the player must find and recover their drugs from the innocent bystanders, without them ever realizing they were involved in the game. The game explores the nature of pervasive game playing in environments that are not, generally, regarded as playful or “fun”. This paper describes the game’s design and implementation as well as an evaluation conducted with participants in real airports. It explores the players’ reactions to the game through questionnaire responses and in-game activity. The technologies used in Blowtooth are, intentionally, simple in order for the enjoyment of the game to be reliant more on the physical environment rather than the enabling technologies. We conclude that situating pervasive games in unexpected and challenging environments, such as international airports, may provide interesting and unique gaming experiences for players. In addition, we argue that pervasive games benefit most from using the specific features and nature of interesting real-world environments rather than focusing on the enabling technologies

    Magnetism and structure of LixCoO2 and comparison to NaxCoO2

    Full text link
    The magnetic properties and structure of LixCoO2 for x between 0.5 and 1.0 are reported. Co4+ is found to be high-spin in LixCoO2 for x between 0.94 and 1.0 and low-spin for x between 0.50 and 0.78. Weak antiferromagnetic coupling is observed, increasing in strength as more Co4+ is introduced. At an x value of about 0.65, the temperature-independent contribution to the magnetic susceptibility and the electronic contribution to the specific heat are largest. Neutron diffraction analysis reveals that the lithium oxide layer expands perpendicular to the basal plane and the Li ions displace from their ideal octahedral sites with decreasing x. A comparison of the structures of the NaxCoO2 and LixCoO2 systems reveals that the CoO2 layer changes substantially with alkali content in the former but is relatively rigid in the latter. Further, the CoO6 octahedra in LixCoO2 are less distorted than those in NaxCoO2. We postulate that these structural differences strongly influence the physical properties in the two systems

    An Open Community-Driven Model For Sustainable Research Software: Sustainable Research Software Institute

    Full text link
    Research software plays a crucial role in advancing scientific knowledge, but ensuring its sustainability, maintainability, and long-term viability is an ongoing challenge. To address these concerns, the Sustainable Research Software Institute (SRSI) Model presents a comprehensive framework designed to promote sustainable practices in the research software community. This white paper provides an in-depth overview of the SRSI Model, outlining its objectives, services, funding mechanisms, collaborations, and the significant potential impact it could have on the research software community. It explores the wide range of services offered, diverse funding sources, extensive collaboration opportunities, and the transformative influence of the SRSI Model on the research software landscapeComment: 13 pages, 1 figur

    Transitioning ECP Software Technology into a Foundation for Sustainable Research Software

    Full text link
    Research software plays a crucial role in advancing scientific knowledge, but ensuring its sustainability, maintainability, and long-term viability is an ongoing challenge. The Sustainable Research Software Institute (SRSI) Model has been designed to address the concerns, and presents a comprehensive framework designed to promote sustainable practices in the research software community. However the SRSI Model does not address the transitional requirements for the Exascale Computing Project (ECP) Software Technology (ECP-ST) focus area specifically. This white paper provides an overview and detailed description of how ECP-ST will transition into the SRSI in a compressed time frame that a) meets the needs of the ECP end-of-technical-activities deadline; and b) ensures the continuity of the sustainability efforts that are already underway.Comment: 7 pages, 1 figur

    High-resolution VLA Imaging of SDSS Stripe 82 at 1.4 GHz

    Full text link
    We present a high-resolution radio survey of the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, a.k.a. Stripe 82. This 1.4 GHz survey was conducted with the Very Large Array (VLA) primarily in the A-configuration, with supplemental B-configuration data to increase sensitivity to extended structure. The survey has an angular resolution of 1.8" and achieves a median rms noise of 52 microJy/bm over 92 deg^2. This is the deepest 1.4 GHz survey to achieve this large of an area, filling a gap in the phase space between small, deep and large, shallow surveys. It also serves as a pilot project for a larger high-resolution survey with the Expanded Very Large Array (EVLA). We discuss the technical design of the survey and details of the observations, and we outline our method for data reduction. We present a catalog of 17,969 isolated radio components, for an overall source density of ~195 sources/deg^2. The astrometric accuracy of the data is excellent, with an internal check utilizing multiply-observed sources yielding an rms scatter of 0.19" in both right ascension and declination. A comparison to the SDSS DR7 Quasar Catalog further confirms that the astrometry is well tied to the optical reference frame, with mean offsets of 0.02" +/- 0.01" in right ascension, and 0.01" +/- 0.02" in declination. A check of our photometry reveals a small, negative CLEAN-like bias on the level of 35 microJy. We report on the catalog completeness, finding that 97% of FIRST-detected quasars are recovered in the new Stripe 82 radio catalog, while faint, extended sources are more likely to be resolved out by the resolution bias. We conclude with a discussion of the optical counterparts to the catalog sources, including 76 newly-detected radio quasars. The full catalog as well as a search page and cutout server are available online at http://third.ucllnl.org/cgi-bin/stripe82cutout.Comment: 18 pages, 22, figures. Submitted to AJ, revised to address referee's comment

    An improved formulation of the relativistic hydrodynamics equations in 2D Cartesian coordinates

    Full text link
    A number of astrophysical scenarios possess and preserve an overall cylindrical symmetry also when undergoing a catastrophic and nonlinear evolution. Exploiting such a symmetry, these processes can be studied through numerical-relativity simulations at smaller computational costs and at considerably larger spatial resolutions. We here present a new flux-conservative formulation of the relativistic hydrodynamics equations in cylindrical coordinates. By rearranging those terms in the equations which are the sources of the largest numerical errors, the new formulation yields a global truncation error which is one or more orders of magnitude smaller than those of alternative and commonly used formulations. We illustrate this through a series of numerical tests involving the evolution of oscillating spherical and rotating stars, as well as shock-tube tests.Comment: 19 pages, 9 figure

    NMR Reveals Functionally Relevant Thermally Induced Structural Changes within the Native Ensemble of G-CSF.

    Get PDF
    Structure-function relationships in proteins refer to a trade-off between stability and bioactivity, molded by evolution of the molecule. Identifying which protein amino acid residues jeopardize global or local stability for the benefit of bioactivity would reveal residues pivotal to this structure-function trade-off. Here, we use 15N-1H heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy to probe the microenvironment and dynamics of residues in granulocyte colony-stimulating factor (G-CSF) through thermal perturbation. From this analysis, we identified four residues (G4, A6, T133, and Q134) that we classed as significant to global stability, given that they all experienced large environmental and dynamic changes and were closely correlated to each other in their NMR characteristics. Additionally, we observe that roughly four structural clusters are subject to localized conformational changes or partial unfolding prior to global unfolding at higher temperature. Combining NMR observables with structure relaxation methods reveals that these structural clusters concentrate around loop AB (binding site III inclusive). This loop has been previously implicated in conformational changes that result in an aggregation prone state of G-CSF. Residues H43, V48, and S63 appear to be pivotal to an opening motion of loop AB, a change that is possibly also important for function. Hence, we present here an approach to profiling residues in order to highlight their potential roles in the two vital characteristics of proteins: stability and bioactivity
    corecore