10 research outputs found

    Mass Spectrometry Quantification, Localization, and Discovery of Feeding-Related Neuropeptides in Cancer borealis

    Get PDF
    The crab Cancer borealis nervous system is an important model for understanding neural circuit dynamics and modulation, but the identity of neuromodulatory substances and their influence on circuit dynamics in this system remains incomplete, particularly with respect to behavioral state-dependent modulation. Therefore, we used a multifaceted mass spectrometry (MS) method to identify neuropeptides that differentiate the unfed and fed states. Duplex stable isotope labeling revealed that the abundance of 80 of 278 identified neuropeptides was distinct in ganglia and/or neurohemal tissue from fed vs unfed animals. MS imaging revealed that an additional 7 and 11 neuropeptides exhibited altered spatial distributions in the brain and the neuroendocrine pericardial organs (POs), respectively, during these two feeding states. Furthermore, de novo sequencing yielded 69 newly identified putative neuropeptides that may influence feeding state-related neuromodulation. Two of these latter neuropeptides were determined to be upregulated in PO tissue from fed crabs, and one of these two peptides influenced heartbeat in ex vivo preparations. Overall, the results presented here identify a cohort of neuropeptides that are poised to influence feeding-related behaviors, providing valuable opportunities for future functional studies

    Recent Advances and New Perspectives in Capillary Electrophoresis-Mass Spectrometry for Single Cell “Omics”

    No full text
    Accurate clinical therapeutics rely on understanding the metabolic responses of individual cells. However, the high level of heterogeneity between cells means that simply sampling from large populations of cells is not necessarily a reliable approximation of an individual cell’s response. As a result, there have been numerous developments in the field of single-cell analysis to address this lack of knowledge. Many of these developments have focused on the coupling of capillary electrophoresis (CE), a separation technique with low sample consumption and high resolving power, and mass spectrometry (MS), a sensitive detection method for interrogating all ions in a sample in a single analysis. In recent years, there have been many notable advancements at each step of the single-cell CE-MS analysis workflow, including sampling, manipulation, separation, and MS analysis. In each of these areas, the combined improvements in analytical instrumentation and achievements of numerous researchers have served to drive the field forward to new frontiers. Consequently, notable biological discoveries have been made possible by the implementation of these methods. Although there is still room in the field for numerous further advances, researchers have effectively minimized various limitations in detection of analytes, and it is expected that there will be many more developments in the near future

    New techniques, applications and perspectives in neuropeptide research

    Get PDF
    ABSTRACT Neuropeptides are one of the most diverse classes of signaling molecules and have attracted great interest over the years owing to their roles in regulation of a wide range of physiological processes. However, there are unique challenges associated with neuropeptide studies stemming from the highly variable molecular sizes of the peptides, low in vivo concentrations, high degree of structural diversity and large number of isoforms. As a result, much effort has been focused on developing new techniques for studying neuropeptides, as well as novel applications directed towards learning more about these endogenous peptides. The areas of importance for neuropeptide studies include structure, localization within tissues, interaction with their receptors, including ion channels, and physiological function. Here, we discuss these aspects and the associated techniques, focusing on technologies that have demonstrated potential in advancing the field in recent years. Most identification and structural information has been gained by mass spectrometry, either alone or with confirmations from other techniques, such as nuclear magnetic resonance spectroscopy and other spectroscopic tools. While mass spectrometry and bioinformatic tools have proven to be the most powerful for large-scale analyses, they still rely heavily on complementary methods for confirmation. Localization within tissues, for example, can be probed by mass spectrometry imaging, immunohistochemistry and radioimmunoassays. Functional information has been gained primarily from behavioral studies coupled with tissue-specific assays, electrophysiology, mass spectrometry and optogenetic tools. Concerning the receptors for neuropeptides, the discovery of ion channels that are directly gated by neuropeptides opens up the possibility of developing a new generation of tools for neuroscience, which could be used to monitor neuropeptide release or to specifically change the membrane potential of neurons. It is expected that future neuropeptide research will involve the integration of complementary bioanalytical technologies and functional assays.</jats:p

    Microanalysis of Brain Angiotensin Peptides Using Ultrasensitive Capillary Electrophoresis Trapped Ion Mobility Mass Spectrometry

    No full text
    While the role of the renin-angiotensin system (RAS) in peripheral circulation is well characterized, we still lack an in-depth understanding of its role within the brain. This knowledge gap is sustained by lacking technologies for trace-level angiotensin detection throughout tissues, such as the brain. To provide a bridging solution, we enhanced capillary electrophoresis (CE) nanoflow electrospray ionization (ESI) with large-volume sample stacking and employed trapped ion mobility time-of-flight (timsTOF) tandem HRMS detection. A dynamic pH junction helped stack approximately 10 times more of the sample than optimal using the field-amplified reference. In conjunction, the efficiency of ion generation was maximized by a cone-jet nanospray on a low sheath-flow tapered-tip nano-electrospray emitter. The platform provided additional peptide-dependent information, the collision cross section, to filter chemical noise and improve sequence identification and detection limits. The lower limit of detection reached sub-picomolar or ∼30 zmol (∼18,000 copies) level. All nine targeted angiotensin peptides in mouse tissue samples were detectable and quantifiable from the paraventricular nucleus (PVN) of the hypothalamus even after removal of circulatory blood components (perfusion). We anticipate CE-ESI with timsTOF HRMS to be broadly applicable for the ultrasensitive detection of brain peptidomes in pursuit of a better understanding of the brain

    Imaging with Mass Spectrometry of Bacteria on the Exoskeleton of Fungus-Growing Ants

    No full text
    Mass spectrometry imaging is a powerful analytical technique for detecting and determining spatial distributions of molecules within a sample. Typically, mass spectrometry imaging is limited to the analysis of thin tissue sections taken from the middle of a sample. In this work, we present a mass spectrometry imaging method for the detection of compounds produced by bacteria on the outside surface of ant exoskeletons in response to pathogen exposure. Fungus-growing ants have a specialized mutualism with <i>Pseudonocardia</i>, a bacterium that lives on the ants’ exoskeletons and helps protect their fungal garden food source from harmful pathogens. The developed method allows for visualization of bacterial-derived compounds on the ant exoskeleton. This method demonstrates the capability to detect compounds that are specifically localized to the bacterial patch on ant exoskeletons, shows good reproducibility across individual ants, and achieves accurate mass measurements within 5 ppm error when using a high-resolution, accurate-mass mass spectrometer

    Sialylation Fine-Tunes Glycoprotein Structural Microheterogeneity Associated with Alzheimer’s Disease as Captured by Native Ion Mobility-Mass Spectrometry

    No full text
    Protein sialylation has been closely linked to many diseases including Alzheimer’s disease (AD) and is broadly implicated in therapeutics in a terminal structure-sensitive manner. However, how sialylation structurally affects mature glycoproteins and how such effect is linked biochemically to AD progression largely remain ill-defined and are, likely beset with the lack of appropriate strategies capable of rapid and in situ manipulation of sialic acids on mature glycoproteins. Herein, we report the use of native ion mobility-mass spectrometry (IM-MS)-based structural probing methodology, enabling well-controlled, synergistic and in situ manipulation of mature glycoproteins and attached sialic acids. Cell viability experiments and IM-MS suggest that the dysregulating effects of transferrin sialylation on the iron-enhanced Aβ cytotoxicity acts through sialylation-dependent Aβ and iron co-importing pathway. Meanwhile, native gel electrophoresis and IM-MS reveal the sialylation-regulated transferrin dimerization tendency. Collectively, IM-MS is adapted to capture key sialylation intermediates involved in fine-tuning AD-associated glycoprotein structural micoheterogeneity. Our results may shed new lights on AD-modifying strategies based on sialylation-regulated glycoprotein functions and cytotoxicity
    corecore