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New techniques, applications and perspectives in neuropeptide
research
Kellen DeLaney1,*, Amanda R. Buchberger1,*, Louise Atkinson2, Stefan Gründer3,‡, Angela Mousley2,‡ and
Lingjun Li1,4,‡

ABSTRACT
Neuropeptides are one of the most diverse classes of signaling
molecules and have attracted great interest over the years owing to
their roles in regulation of a wide range of physiological processes.
However, there are unique challenges associated with neuropeptide
studies stemming from the highly variable molecular sizes of the
peptides, low in vivo concentrations, high degree of structural
diversity and large number of isoforms. As a result, much effort has
been focused on developing new techniques for studying
neuropeptides, as well as novel applications directed towards
learning more about these endogenous peptides. The areas of
importance for neuropeptide studies include structure, localization
within tissues, interaction with their receptors, including ion channels,
and physiological function. Here, we discuss these aspects and the
associated techniques, focusing on technologies that have
demonstrated potential in advancing the field in recent years. Most
identification and structural information has been gained by mass
spectrometry, either alone or with confirmations from other
techniques, such as nuclear magnetic resonance spectroscopy and
other spectroscopic tools. While mass spectrometry and
bioinformatic tools have proven to be the most powerful for large-
scale analyses, they still rely heavily on complementary methods for
confirmation. Localization within tissues, for example, can be probed
by mass spectrometry imaging, immunohistochemistry and
radioimmunoassays. Functional information has been gained
primarily from behavioral studies coupled with tissue-specific
assays, electrophysiology, mass spectrometry and optogenetic
tools. Concerning the receptors for neuropeptides, the discovery of
ion channels that are directly gated by neuropeptides opens up the
possibility of developing a new generation of tools for neuroscience,
which could be used tomonitor neuropeptide release or to specifically
change the membrane potential of neurons. It is expected that future
neuropeptide research will involve the integration of complementary
bioanalytical technologies and functional assays.

KEYWORDS: Neuropeptides, Mass spectrometry, Peptide-gated ion
channel, FaNaC/HyNaC, Immunochemistry, Electrophysiology

Introduction
Neuropeptides are a class of endogenous peptides that act as long-
lasting neurotransmitters in the nervous system and other target
organs. By signaling via synapses or volume transmission via
diffusion, as well as via long-range signaling as circulating
hormones, neuropeptides and their receptors play an important
role in several key processes. When a neuron releases
neuropeptides, the binding of the neuropeptide to its receptor on a
receiving cell causes conformational changes within the receptor
that, depending on the type of receptor, either open ion channels or
activate coupled G proteins that can cause a series of downstream
effects within the cell (van den Pol, 2012). As neuropeptides are a
highly diverse class of signaling molecules in the brain and other
peripheral organs, their structures, functions and localization are of
great interest and relevance (Hughes and Woodruff, 1992). The
extent of their implied roles in normal biological processes has been
a point of focus in studies over the years (Hook and Bandeira, 2015;
Zhang et al., 2014). Abnormalities in their expression can contribute
to various neurological diseases by altering the function of specific
neurons, and so understanding the mechanisms of neuropeptide
signaling can help researchers to better understand these diseases
and develop more focused and effective treatments (Beal and
Martin, 2016). Furthermore, neuropeptides have been implicated in
the regulation of normal biological functions, such as feeding
regulation (Chen et al., 2010b; Gomes et al., 2013), and the
adaptation to external factors, such as temperature fluctuation (Chen
et al., 2014), and internal stress factors, including depression,
anxiety and post-traumatic stress disorder (Kormos and Gaszner,
2013; Reichmann and Holzer, 2016). As a result, understanding the
specific role individual neuropeptides play in response to
interactions with the environment and in the execution of
biological functions can provide a greater understanding of the
underlying mechanisms at the cellular and systemic level.
Investigations of the relationship between neuropeptides and their
receptors are useful for the development of drug molecules for
treating diseases or for otherwise manipulating interactions between
peptidergic neurons, such as the treatment of specific symptoms
(e.g. chemotherapy-induced emesis) (Hökfelt et al., 2003).

While neuropeptides are interesting biomolecules that have
important roles in regulating a wide range of physiological
processes, they have numerous characteristics that make them
challenging to study. Because neuropeptides can be used as
modulators for signaling locally between neurons as well as
functioning as hormones that can travel a long distance to target
sites, the in vivo concentrations can vary dramatically. Furthermore,
low concentrations of neuropeptides can have profound effects –
these signaling molecules are typically present at low endogenous
concentrations, up to 1000-fold or lower than classical
neurotransmitters and other metabolites (Romanova and
Sweedler, 2015). This challenge is exacerbated by the lack of a
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digesting enzyme for a typical neuropeptide analysis workflow, as
these molecules are products of proteolytic processing and post-
translational modifications (PTMs) that occur inside cells or during
transportation. As such, there is only one opportunity for detecting
each peptide, unlike in ‘bottom-up’ proteomic studies, where a
single unique tryptic fragment is sufficient to detect a protein
(Fricker et al., 2006). This necessitates the development of highly
sensitive detection methods in order to avoid large sample
requirements. Additionally, sample processing methods need to
be fast because, as with other signaling molecules, neuropeptides
are prone to rapid degradation. Thus, it is often difficult to identify
peptides as endogenous and not simply the product of a degraded
larger protein, further complicating analysis (Schrader et al., 2014).
Additionally, there is a large amount of variability between different
neuropeptides, either owing to possession of different sequences but
with the same mass or because of them having numerous PTMs (Li
and Sweedler, 2008). Even when the structure has been identified,
there are still complications. Neuropeptides can have the same
structure but different functions or have different functions
depending on the cell type and nearby receptors (Morimoto et al.,
2008). Furthermore, as many isoforms exist for various
neuropeptide families, localization of specific neuropeptides can
be challenging owing to difficulties assigningmass spectral peaks to
specific peptides (Hanrieder et al., 2012).
Despite these difficulties, much progress has been made over the

years to characterize neuropeptides, including gaining information
about their structure, function and localization within cells and the
whole neuroendocrine system. Here, we focus on reviewing recent
advancements made in developing techniques and applications to
study neuropeptides and their receptors, while pausing to offer

insights into the direction in which the field is moving. The areas
described include structural elucidation of neuropeptides, methods
for their localization, and their functional assessment, as depicted in
Fig. 1 and summarized in Table 1, all of which are required to
understand neuropeptide biology comprehensively. We also present
a case study on the characterization of peptide-gated ion channels
and how they might be modified into new tools for neuroscience.
While space constraints mean that we do not intend to provide a
comprehensive account of all recent publications, we nevertheless
provide notable highlights of some key developments made within
the past few years.

Elucidation of neuropeptide structures
Perhaps the most important information gained about
neuropeptides relates to their structures (e.g. amino acid
sequence, PTMs, folding pattern, binding sites), as these provide
insights into their function and biological mechanisms. However,
gaining this information can be challenging and cumbersome.
While it has been almost a century since the first neuropeptide,
substance P, was discovered (von Euler and Gaddum, 1931), and
nearly 50 years since the sequence of that peptide was determined
(Chang et al., 1971), technology has since developed impressively,
and there are now records of almost 6000 neuropeptide sequences
across all species (Wang et al., 2015).

Early work in structural elucidation relied on Edman degradation,
a technique developed by Pehr Edman, in which peptides are reacted
with phenyl isothiocyanate at the N-terminus and analyzed one
amino acid at a time as each residue is removed (Edman, 1950).
Successful sequencing using Edman degradation relies on the
peptide being present in high concentrations (>1 picomolar) and at
high purity. While Edman degradation is a classic method that
allowed for the sequencing of many neuropeptides early on, it is less
widely used, as other, more high-throughput, methods have
emerged in recent years. The technique is still used in some
applications, although mostly coupled with mass spectrometry
(MS). For example, it has been successfully used to sequence a
novel neuropeptide, Y-HS, in leeches (Liu et al., 2016c), to discover
a novel arrangement of cysteine residues in a neuropeptide from a
worm-hunting snail (Aguilar et al., 2013), and to determine the
sequence of human and mouse urocortin 2, a member of the
corticotropin-releasing factor neuropeptide family (Vaughan et al.,
2013). Although Edman degradation has proven to be a useful
addition to other techniques in these applications, the method has
largely been replaced with higher-throughput and more-sensitive
methods, such as MS, in the past decade.

Currently, MS serves as the method of choice for sequencing and
determining the PTMs of neuropeptides (Gilsh and Vachet, 2003; Li
and Sweedler, 2008; Potocnik et al., 2017; Romanova and
Sweedler, 2015). MS has proven to be useful for detecting small
amounts of peptides in complex biological samples, making it a
high-throughput and versatile technique ideal for the study of
endogenous neuropeptides. This advancement has enabled the
emergence of ‘neuropeptidomics’, studying the entire neuropeptide
complement as a whole either by comparing spectra to a database of
known neuropeptides or de novo sequencing to discover new
neuropeptides (Steen and Mann, 2004). Fig. 2 shows how MS
spectra can be used to assign sequences by matching fragment ion
masses to amino acids based on cleavage patterns and comparing
the de novo sequences to those predicted based on genomic data.

Numerous studies have been performed using a variety of specific
MS techniques. These techniques and their results have been
comprehensively reviewed elsewhere (Buchberger et al., 2015;

Glossary
Depolarizing
Increasing the membrane potential (towards a less negative voltage)
Desensitizing
Becoming insensitive to a ligand upon prolonged exposure to it, causing,
for example, an ion channel to close even though it has a ligand
bound
Hyperpolarizing
Decreasing the membrane potential (towards a more negative voltage)
MS3 level
In mass spectrometry, during MS1 level acquisition, an m/z of interest
is selected for fragmentation (tandem MS, MS/MS or MS2) to obtain
key structural information. A MS2 ion can then be selected further to
undergo another stage of fragmentation, which is referred to MS3
level.
Patch pipette
The recording electrode in a patch clamp electrode set up. The electrode
is usually a glass micropipette.
Postsynaptic membrane
Synapses are the sites of contact of a neuron with another cell. At the
presynaptic membrane, the neuron releases the transmitter. At the
postsynaptic membrane, the other cell, which can for example be
another neuron or a muscle cell, receives the transmitter. The
presynaptic and postsynaptic cells are separated from each other by
the synaptic cleft.
Sequence coverage
The percentage of a neuropeptide’s sequence that is identified in a mass
spectrometry experiment. Higher sequence coverage corresponds to a
more confident identification for a given neuropeptide.
Western blotting
An antibody-based technique to visualize proteins in a sample.
Classically, a separation, such as gel electrophoresis, is done prior to
exposing the proteins to the antibodies.
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Romanova and Sweedler, 2015), but noteworthy strides have been
made recently, such as developments in analyzing neuropeptides rich
in disulfide bonds, which in the past has been a particularly laborious
task. A new method has recently been developed for identifying
disulfide bonds by alkylating peptides and then performing targeted
fragmentation on disulfide-bonded peptides (Yu et al., 2015).
Another method has integrated MS and nuclear magnetic
resonance (NMR) techniques for rapid identification and
characterization of disulfide bonds using only 4 ng of a peptide
sample. The method involved studying the mass differences between
folded and unfolded neuropeptides. As disulfide bond formation
results in a mass difference of ∼2 Da due to the loss of two hydrogen
atoms, and these disulfide bonds are not present in unfolded peptides,
the mass differences can be used to assess the number of disulfide
bonds present in a folded peptide. The presence of disulfide bonds
can then be confirmed with NMR (Anand et al., 2016). Another
challenge with neuropeptidomics is that neuropeptides degrade
substantially over time. A new, high-throughput framework for
neuropeptide identification has recently been developed for fast high-
throughput analysis, minimizing neuropeptide degradation. With this
method, researchers were able to successfully identify thousands of
neuropeptides and post-translational modifications (Secher et al.,
2016). Additionally, neuropeptide sequence coverage has been
shown to improve when coupling several techniques of
fragmentation (e.g. high-energy collisional dissociation and
electron-transfer dissociation) (Frese et al., 2013; Schmidlin et al.,
2015; Shen et al., 2011), especially when utilizing dual fragmentation
with electron-transfer high-energy collisional dissociation (EThcD)
(Frese et al., 2012; Yu et al., 2017).

Advances have also been made in the characterization of novel
neuropeptides from model organisms, expanding our knowledge of
existing neuropeptides. By combining matrix-assisted laser
desorption/ionization (MALDI) and electrospray ionization (ESI)
MS to characterize the carpenter ant neuropeptidome, 39
neuropeptides were identified (Schmitt et al., 2015). The beetle
neuropeptidome has also been expanded within the past year, with
novel neuropeptides from the adipokinetic hormone family
sequenced with ESI-MS and tandem MS. These were confirmed
by co-eluting each naturally existing neuropeptide with its synthetic
neuropeptide by means of liquid chromatography (LC) (Gäde et al.,
2015, 2016). One other noteworthy group of organisms seeing
significant growth in knowledge of its neuropeptidome has been
members of the subphylum crustacea. Multidimensional MS
techniques have been successfully implemented in both defining
neuropeptidomes, such as that of the spiny lobster (Ye et al., 2015),
and discovering numerous novel neuropeptides (Hui et al., 2013; Jia
et al., 2013). As a complementary separation technique, ionmobility
spectrometry (IMS) is currently experiencing rapid growth, and its
use in conjunction with MS has allowed for a more comprehensive
study of peptide structure (Kanu et al., 2008). Recently, ion mobility
spectrometry (IMS) has been used for conformational studies
investigating the role of the penultimate proline residue (Glover
et al., 2015) and D-amino acid-containing peptide epimers (Jia et al.,
2014; Pang et al., 2017), and it is expected that more structural
knowledge will come from IMS in future studies.

The capabilities of MS for discovery and characterization of
neuropeptides have been greatly assisted by the development of
computational methods for predicting neuropeptides from precursor
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Fig. 1. A general depiction of the importance of
structure, function and localization to provide
key information about a neuropeptide. Several
methods for each area of the Venn diagram are
highlighted. For structure tools, MS, computational
prediction and NMR are shown. MALDI MSI and
IHC are the examples depicted for tools to provide
localization. For understanding functionality,
quantification, behavioral studies and
electrophysiology are core techniques.
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proteins and gene sequences. The area of in silico prediction has
seen substantial growth in the past few years, with neuropeptidomes
being predicted for a wide variety of organisms and novel
neuropeptides being targeted for more focused analyses (Christie,
2014). Coupling these informatics approaches to other methods of
analysis, particularly MS, has allowed for an expanded coverage of
neuropeptidomes, which is important for species without a fully
sequenced genome, especially when one transcript can produce
several neuropeptides (Christie, 2014; Wong et al., 2016). For
example, the crab Cancer borealis peptidome was doubled by
mining its neural transcriptome (Christie and Pascual, 2016). As a
complementary technique, researchers have also made use of in
silico prediction methods to characterize neuropeptide receptors,
which gives insight into both structural and functional properties by
assessing similarities to previously characterized receptors (Bigot
et al., 2014). Computational efforts have further been directed
toward compiling databases of known neuropeptides to provide
comprehensive coverage and compare neuropeptides detected in
different species. The most recent of these, NeuroPep, contains
almost 6000 entries (Wang et al., 2015). Resampling approaches are
being developed to improve database matching, allowing for better
identifications in terms of both quality and quantity (Akhtar et al.,
2014).
By combining information about structure gained from MS with

other powerful analytical tools, researchers have been able to gain
better insight into the overall structural composition of
neuropeptides. Various types of NMR techniques have been
implemented for studying neuropeptides, which are particularly
valuable for characterizing folding patterns. Fig. 3 shows an
example of how several complementary NMR experiments can be
combined to assess the structural conformation of a neuropeptide, as
was done to determine the conformational patterns of the hormone

pheromonotropin that controls larval sex pheromone production
(Bhattacharya et al., 2015). Several recent advances have been made
in understanding the secondary structure of neuropeptides. As an
example, a precursor protein existing in marine snail venom was
investigated by using solution NMR structural determination and
was found to have a disulfide-directed β-hairpin fold, which initiates
folding in other disulfide-containing areas of the peptide (Robinson
et al., 2016). Some neuropeptides have been found to lack
secondary structure, as in the case of an RFamide neuropeptide
discovered in cone snail venom (Robinson et al., 2015). As
structural characteristics are important for the interaction between
neuropeptides and their receptors, many recent advances have used
NMR to characterize these relationships, such as determining which
conformations are important for biological activity, as has been
investigated for various analogs of an allatostatin neuropeptide (Xie
et al., 2015), as well as determining which part of the receptor
neuropeptides were bound to, as has been accomplished with solid-
state NMR for neuropeptide Y and its receptor (Kaiser et al., 2015).
The relationship with receptor sites has been extended to assess the
structure of agonists and antagonists bound to neuropeptide
receptors and study their respective conformations, for example of
dynorphin bound to the human κ-opioid receptor (O’Connor et al.,
2015). These characterizations of neuropeptide and neuropeptide–
receptor conformations should enable future advances in
developing drugs to mimic or block neuropeptide binding.

Other spectroscopic methods have also been useful in the
characterization of neuropeptides. Infrared (IR) spectroscopy has
successfully been used to provide a quantitative estimate of
secondary structural elements. When analyzed by IR
spectroscopy, peptides demonstrate characteristic peaks for
different folding patterns, including α-helices, β-sheets and turns,
as has been characterized in human Peptide YY neuropeptide

Table 1. A summary of notable techniques commonly used to provide information about the threemajor areas of neuropeptide research: structure,
localization and function

Area of
interest Technique Description Key references

Structure Mass spectrometry Determines sequences, PTMs and structural information Secher et al., 2016; Gade et al., 2016;
Glover et al., 2015

In silico prediction Predicts sequences and structure from precursor protein
and gene sequences

Christie, 2014; Wong et al., 2016; Bigot
et al., 2014

NMR Gives information into conformations and folding patterns Robinson et al., 2016; Xie et al., 2015;
Kaiser et al., 2015

Spectroscopy Uses characteristic peaks to identify folding patterns Hegefeld et al., 2011; Schneider et al.,
2016

X-ray crystallography Characterizes key structural sites with high spatial resolution Hassler et al., 2014; Yin et al., 2014
Localization Immuno assays Enables localization for virtually any peptide using

antibodies
Singh et al., 2016; Husson et al., 2009;
Rowe and Elphick, 2012

In situ hybridization Target-specific expression mapping of neuropeptide-
encoding genes

Levsky and Singer, 2003; Qian and
Lloyd, 2003; Atkinson et al., 2016

Promotor::reporter gene constructs Enables transcript detection in living cells and organisms Kim and Li, 2004; Clynen et al., 2010;
Turek et al., 2016

MSI Capable of imaging entire neuropeptidomes without prior
knowledge

Chen et al., 2016a; Mark et al., 2012;
OuYang et al., 2015a

Bio imaging and microscopy Maps the architecture of the nervous system Schmidt-Rhaesa et al., 2016; Fricker,
2012; Bixel et al., 2015

Function Behavioral studies Common first step to obtaining a general understanding of
function to judging potential for disease treatment

Zhang et al., 2016; Kasica et al., 2016;
Flores-Burgess et al., 2017

Electrophysiology Provides understanding of synaptic mechanisms Kuksis and Ferguson, 2014; Li et al.,
2016; Otopalik et al., 2017

Quantitative analyses (western
blotting, ELISA, MS, etc.)

Implies functions by measuring changes in neuropeptide
levels due to specific behaviors or conditions

Liu et al., 2016a; Schmerberg and Li,
2013b; Bilgic et al., 2016

Each technique described has the potential to provide deep insight into neuropeptide biology, and often provide complementary information to other techniques.
Several key references are indicated for each that demonstrate current trends in the field.
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(Hegefeld et al., 2011). Circular dichroism (CD) spectra have also
shown utility in the rapid determination of secondary structure, and
have provided evidence for the existence of α-helices in tachykinin-
related peptides and β-sheets in melanocyte-stimulating hormone
(MSH) peptides that increase with increasing charge state
(Schneider et al., 2016). X-ray crystallography benefits from
providing sub-angstrom resolution of key structural sites. The
binding structures of neuropeptides with their receptors have been
well characterized with X-ray crystallography, including studies of
the receptor for neuropeptide S (Hassler et al., 2014) and human
OX2 receptor (Yin et al., 2014). Information from crystallography
can provide useful details about neuropeptide structure that might
lead to insights about function.

Methods for neuropeptide localization
Neuropeptide localization in species and/or tissue(s) enables
mapping in neuronal subtypes relative to structural components of
the cell, tissue or whole organisms, which can then be used to
inform the function of a target neuropeptide and to direct functional
biology experiments (Hoelters et al., 2016). Overall, the rapid
increase in ‘omics’-derived neuropeptide sequence data has
revolutionized our approach to the localization of neuropeptides
and their signaling pathway components (Elphick and Mirabeau,

2014) and facilitated our ability to construct species- and
neuropeptide-specific ‘connectomes’ (Shahidi et al., 2015). The
application of localization techniques across species, and tissue
and cell types, is fundamental to understanding the complexity of
neuropeptidergic signaling and has trans-disciplinary importance
(De Haes et al., 2015); indeed these techniques have been applied to
cell cultures (2D, 3D or single cells) (Ahlf Wheatcraft et al., 2014;
Janson et al., 2016; Zimmerman et al., 2011) and entire organisms
(whole and sections) (Condro et al., 2016; Khatib-Shahidi et al.,
2006). Neuropeptide localization in thick tissues, such as whole
organisms or invertebrate brain tissue, can be achieved by using 3D
mapping and ion density reconstruction of individual tissue sections
to produce 3D representations of neuropeptide distributions (Chen
et al., 2009). The advances in the tools and techniques described
here have facilitated exploration of neural circuitry landscapes such
that knowledge about neuropeptide localization and expression is
accumulating rapidly.

Visualization or detection of neuropeptides at the cellular, tissue,
whole organism or bio-fluid levels has been enabled by the
application of radioimmunoassays (RIAs), immunohistochemistry
(IHC), immunocytochemistry (ICC) and immunoelectron
microscopy to the extent that these techniques have provided most
of our former and current knowledge on the localization of
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neuropeptides (Yalow and Berson, 1960). Compared with
traditional histology-based approaches, these techniques enable
enhanced specificity and sensitivity through the use of antibodies –
for example, for the detection of the specific psychostimulant
neuropeptide cocaine- and amphetamine-regulated transcript
peptide (CART) (Singh et al., 2016). Antibodies can theoretically
also be raised against virtually any peptide; however, many
invertebrate neuropeptide genes encode more than one
biologically active peptide that show high structural similarity to
each other, leading to antibody cross-reactivity (Husson et al., 2009;
McVeigh et al., 2009; Rowe and Elphick, 2012). Generation of
N-terminally directed antisera, which can readily distinguish
between peptides with highly similar C-terminal motifs, can help
overcome cross reactivity issues (Atkinson et al., 2016). Another
limiting factor is the number of peptides (and peptide signaling
pathway components) that can be colocalized at the same time
through traditional IHC and ICC approaches, which is in contrast to
what is seen with MS-based peptidomics tools (see below) that
enable the complete neuropeptide profile of the animal, tissue,
organ or even a single cell to be deduced at any given time, readily
enabling the identification of multiple colocalization events.
In situ hybridization (ISH) methods facilitate target-specific

expression mapping of neuropeptide-encoding genes at the whole
animal, tissue and single-cell level by determining the RNA
localization. This involves hybridization of a single-stranded RNA
oligoprobe and the complementary native mRNA sequence in the
tissue or cell. The field of ISH and fluorescence ISH (FISH) has
advanced significantly to enable the high-sensitivity detection of
multi-target RNAs simultaneously in multiple species coupled with
automated data collection and analysis systems (Levsky and Singer,
2003). There are several different approaches for detection of

hybridized probes, including non-radioactive and radioisotope
strategies. Regardless of the approach, careful consideration
should be given to transcript abundance, where the detection of
low-level or single-copy transcripts [e.g. of G-protein-coupled
receptors (GPCRs)] can benefit from the use of target, signal or
probe amplification techniques (Qian and Lloyd, 2003). Whilst one
caveat of ISH is that the information it provides on RNA localization
gives no definite indication of translated peptide distribution, it can
relate valuable spatio-temporal information to gene activity when
used in conjunction with ICC and IHC (Atkinson et al., 2016).

Reporter gene constructs encode proteins that function as site-
specific gene expression markers when fused to the regulatory
regions (promoters) of a gene of interest. They offer an alternative
detection method to ISH that is useful for transcript detection in
living cells and organisms. Themethod requires the promoter region
of the neuropeptide gene and coding region of the reporter gene to
be fused and inserted into the organism of choice for use as a
reporter of gene expression. It is important that the reporter gene
[which often encodes green fluorescent protein (GFP)] is non-
native, assayed easily (e.g. by visual detection) and does not affect
the normal physiology of the organism under study. The use of
promoter::reporter gene constructs as localization tools is popular
in model organisms such as the fruit fly Drosophila melanogaster
and the nematode Caenorhabditis elegans, where transgenesis
is readily achievable (Clynen et al., 2010; Husson et al., 2007;
Kim and Li, 2004). A cautionary note should be given on the
reliance on transcriptional reporters, however, as they do not
always provide complete and reliable gene expression data in
comparison to translational reporters that include important intron
and 3′ untranslated region (UTR) regulatory elements (Turek et al.,
2016).
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Fig. 3. NMR spectra of a peptide standard of the
neuropeptide pheromonotropin, originally discovered in
an extract from the head of Mythimna (Pseudaletia)
separata (armyworm) larvae. (A) One-dimensional [1H]
NMR spectra collected at different temperatures, showing
differences in chemical shift of NH protons in the peptide. The
dependence of chemical shift on temperature is indicative of
the degree of hydrogen bonding. Values below 3.00 ppb
(chemical shift) per unit Kelvin indicate the presence of strong
hydrogen bonds. As can be seen, the values for this peptide
fall above that threshold, revealing that the protons are freely
exposed to the solvent in this conformation. (B) Two-
dimensional NMR spectra [total correlated spectroscopy
(TOCSY) in blue, and rotating-frame Overhauser
spectroscopy (ROESY) in red], showing a sequential
assignment walk. The TOCSY spectrum provided information
on NH-αH cross peaks, while cross peaks from the ROESY
spectrum represent NHi-αH(i-1). Adapted with permission from
Bhattacharya et al. (2015).
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Techniques for localization of the complete neuropeptidome of
an organism have seen progress with the use of MS since its recent
development as a molecular imaging tool (Caprioli et al., 1997;
OuYang et al., 2015b; Ye et al., 2012). Because no prior knowledge
of the molecules is needed for analysis, theoretically hundreds or
thousands of molecules can be imaged in one sample run. Among
the various ionization sources available, MALDI has been the most
prominent in imaging peptides and neuropeptides (Boggio et al.,
2011; Ye et al., 2013), although success of detecting or identifying
the neuropeptides is dictated by sample preparation and the detector
coupled to the MALDI source. Time-of-flight-based instruments
have a niche in analyzing larger neuropeptides with a fast speed, but
the low resolution and sensitivity have motivated the development
of alternative ionization techniques for larger neuropeptides,
including matrix-assisted ionization in vacuum and laserspray
ionization, which can be accomplished with commercial MALDI
sources (Chen et al., 2016a; McEwen et al., 2010; Trimpin and
Inutan, 2013). For example, Chen et al. were able to ionize an
18.7 kDa protein on a commercial MALDI-LTQ-Orbitrap XL,
which is usually limited to molecules smaller than 4 kDa. It should
be noted that some of the matrices required are more compatible
with long imaging runs than others. Moving forward, refinements
have recently been made in the optimization of sample preparation
methods forMS imaging. For example, when sectioning tissue, only
certain embedding materials are compatible with MS (Niehoff et al.,
2014; Strohalm et al., 2011). Optimal cutting temperature
embedding material is commonly used for the classical histology
staining, but due to its polymer structure, it tends to suppress and
mask the analyte signal, especially in the mass range of most
neuropeptides. Another major problem is that, prior to any histology
analysis, samples tend to be passed through the fixation process to
help maintain tissue structure and deactivate any degradation
processes, which limits neuropeptide MS analysis (Casadonte and
Caprioli, 2011; Chaurand et al., 2008). Tissue fixation requires
many washes, which may remove neuropeptides, and possibly a
crosslinking step, which will make neuropeptides unavailable for
extraction by the matrix and thus ionization. To complicate the
situation further, the choice and application of the matrix is
extremely important for the proper extraction of neuropeptides, and
extensive effort has been devoted to developing better, more-
effective methods (Gemperline et al., 2014; Guenther et al., 2011).
For example, by utilizing electrospray deposition of the matrix α-
cyano-4-hydroxycinnamic acid, researchers have imaged the
FMRFamide neuropeptide family from a snail at a 5 μm spatial
resolution, allowing confirmation of the localization found via IHC
analysis (Márk et al., 2012). For more details, readers may consult
recent reviews for MS imaging and its application to neuropeptides
(Buchberger et al., 2015; Caprioli, 2015; Caprioli et al., 1997;
Schmerberg and Li, 2013a).
In general, the reliance of mass matching for compound

identification in MS imaging poses limitations in identification
confidence. Owing to the low abundance of neuropeptides,
performing tandem MS during imaging is often challenging.
Therefore, accurate mass matching is the easiest way to identify a
putative neuropeptide. The incorporation of high-quality tandemMS
in a hybrid linear ion-trap–orbitrap instrument has provided
improved in situ neuropeptide identification (Chen et al., 2010a;
Römpp et al., 2010; Verhaert et al., 2010). The development of a
spiral step method (Fig. 4), instead of the standard raster step, has
allowed for further enhancement of chemical information by
improving the depth of profiling and producing higher-quality
images on Orbitrap-based instruments (OuYang et al., 2015a).

Another technique, IMS, has the potential to be used before detection
and to remove interfering molecules and thus increase the image
quality (Sturm et al., 2014). Overall, the unparalleled chemical
information and multiplexing capacity offered by MS imaging
technology provides an attractive tool for high-throughput mapping
the localization of neuropeptides, although the inherent limitations of
laser beam size andmatrix crystal size of theMSI technique prevent it
from having the same spatial resolution offered by IHC/ICC
approaches. Further technology development is needed to improve
these aspects and sensitivity to allowMS imaging to become a central
tool for neuropeptide localization in the nervous system.

Recent advances in bioimaging and microscopy tools in parallel
with upgrades in computer processing and digital storage
capabilities have significantly enhanced the ability to capture and
describe the neuroanatomy of invertebrates. Traditionally, light
microscopy has been used in invertebrate neuroscience research to
map the coarse architecture of the nervous system, with electron
microscopy being employed for fine ultrastructural analysis
(Schmidt-Rhaesa et al., 2016). More recently, confocal and
multiphoton microscopy have facilitated the generation of high-
resolution 2D and 3D images of both thicker whole-mount and live
specimens (Bixel et al., 2015). Laser microdissection tools provide
an alternative to labor-intensive antibody-based experiments by
enabling the post-capture profiling of neuropeptides (e.g. via
RNAseq) in specific neurons or in tissues embedded in
heterogeneous samples (Fricker, 2012). Advances in image-
analysis software programs make the comparative quantification
of neuropeptides in the nervous system more streamlined, and
facilitate the integration of optical imaging technologies into the
functional genomics ‘toolbox’ (Atkinson et al., 2013; Robichaud
et al., 2013). Additionally, integrating multimodal imaging studies
through MALDI-MS imaging and microscopy-based imaging
could provide enhanced spatial and chemical information for
neuropeptide localization.

Web-based databanks for curating neuropeptide data in
invertebrates are a much-needed resource that will greatly
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Fig. 4. In order to achieve better profiling depth during MS imaging of
neuropeptides, a spiral step method has been developed. Instead of the
classical raster step (A), a spiral square (B) is set up. In the example spiral, the
square is broken into nine individual steps. The first square is anMS scan (dark
blue), while the two following squares (light blue) are tandem MS scans. This
repeats three times until all nine steps in the spiral are completed. Each square
is a raster step of 50 μm, with the whole spiral being 150 μm. This system can
be customized to balance MS and tandem MS scans. For example, step one
could be anMS scan, while squares 2–9 could be tandemMS scans if the user
desires. Furthermore, this method can be targeted or used with data-
dependent acquisition (DDA). For DDA experiments, the highest intensity
peaks are chosen for tandem MS analysis. Since neuropeptides tend to be in
low abundance compared to lipids and have a wide mass range, we can
segregate the spiral step method into multiple mass ranges (e.g. three) to
improve sampling of neuropeptides (C). The distinct m/z ranges are shown in
the three different colors in the spectrum (OuYang et al., 2015a).
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facilitate invertebrate neuropeptide research and enable inter- and
cross-phyla comparative analyses, in addition to providing a ‘go to’
repository for researchers. These types of resources are currently
available for a number of invertebrate phyla and provide a range of
data types in user-friendly formats (Yeoh et al., 2017); the database
NeuroPep collates pan-phylum data and enables comparisons of
neuropeptide structure, expression and function (Wang et al., 2015).
Furthermore, the availability of species-specific anatomical maps of
the nervous system is essential for the precise and comparable
morphological description of peptidergic neurons in invertebrates.
These data are currently available for only a few invertebrate species
(Menzel, 2012), including key model organisms [for example,
C. elegans: Wormatlas (Altun et al., 2002-2018); Drosophila
melanogaster: Neurokernal, Virtual Fly Brain (Armstrong et al.,
1995; Chiang et al., 2011; Givon and Lazar, 2016); zebrafish:
Z-brain (Randlett et al., 2015); and Macrostomum lignano (Morris
et al., 2007)]; however, they are all at different stages of completion
and vary in terms of their resolution, presentation and data source.
These data are extremely valuable to our understanding of
invertebrate nervous system structure and function and will
inform functional biology. Efforts to generate similar maps for
other species of interest are under way, but significant attention and
support should be directed to the curation and maintenance of these
resources, as there are many online databases that are no longer
active owing to the termination of funding (Katz et al., 2010).

Assessing the function of neuropeptides
While the identification of neuropeptides is important,
understanding their role in the nervous system is key to finding
further applications. Understanding function is extremely difficult,
as neuropeptides can have completely different functions within
different tissues. Furthermore, even slightly different neuropeptide
isoforms from the same family can have drastically different effects.
Interestingly, even with the development of new, technologically
advanced alternatives, older, well-vetted methods are still present in
the literature either as a method of analysis or to confirm the
observed results (Bilgic et al., 2016; Liu et al., 2016a). Function can
be explored at many levels, ranging from the macro (e.g. behavioral)
to the molecular scale (e.g. signaling pathways). Localization can
also aid elucidation of neuropeptide function, as the tissue(s) a
peptide is localized in may provide key clues about its role in the
organism (Bruzzone et al., 2006). A variety of functional biology
tools and techniques can be employed to determine the function of a
neuropeptide, including those applied in either in vivo or in vitro
settings. Two major approaches for functional analysis will be
discussed below: altering the neuropeptide content and measuring
neuropeptide levels.

Altering neuropeptide content
The most commonly performed and observed in vivo studies
involve assessing behavioral and/or physical changes arising from
the introduction of a neuropeptide into an organism or by using
reverse genetics (RNA interference) to downregulate a specific
neuropeptide (e.g. using siRNAs) (Bayerl et al., 2016; Lin et al.,
2016). These approaches can provide a range of information from a
general understanding of the physiological function of a
neuropeptide to judging whether neuropeptides are therapeutically
active (Wickström et al., 2004; Zhang et al., 2016). Neuropeptides,
their antagonists and siRNAs can be delivered to an organism in
several different ways, including by injection (Javadian et al., 2016;
Narváez et al., 2016), incubation in media containing molecules
(Chen et al., 2016b; Kasica et al., 2016) and even microdialysis

(Torregrossa and Kalivas, 2008). siRNAs, RNA molecules that
interfere with an expression of a gene, may require more
sophisticated methods of delivery (e.g. transfection) or can also be
injected for the induction of gene-silencing and thus knockdown of
the neuropeptide (Flores-Burgess et al., 2017; Yang et al., 2017).
Beyond introducing a neuropeptide or a neuropeptide antagonist,
neuropeptide production can be altered at the genetic level in
organisms, such as mice, through the production of knockout or
transgenic animals, or through targeted genome editing approaches
(e.g. the CRISPR/Cas system) (Hay et al., 2017; Shao et al., 2016;
Van Sinay et al., 2017). CRISPR/Cas has gained a lot of popularity
for its speed, ease of use and efficiency compared to other methods
used to knockout genes or create transgenic animals (Hay et al.,
2017). It should be noted that this technology is new and can be
expensive to implement on a large scale. Furthermore, its
application is not possible in non-model organisms. In all the
cases described above, careful planning is required to determine the
most appropriate and applicable technique to alter neuropeptide
levels in an organism.

After alteration of the neuropeptide content, several behavioral
observations or tests can be performed to assess change. Examples of
behavior tests for animals (e.g. Wistar rats) are open-field-based or
maze-based tests (Bahaaddini et al., 2016; Chrousos and Gold, 1992),
and these tests are applicable to numerous species, including
invertebrates such as planarians and C. elegans (Hagstrom et al.,
2016; Qin and Wheeler, 2006). While these tests are easily
performed and are normally the starting point for functional studies
(Chu et al., 2016), behavioral studies are based on observations,
meaning that datamisinterpretation or choice of test tomonitor changes
can produce misleading data. Thus, care should be taken on choosing
the most appropriate tests, methods or animal models to assess
behavioral changes attributable to application of neuropeptides.

As neurons transmit signals through electrical currents, another
facet of function to consider is electrophysiology. By selective or
global activation, researchers are able to understand synaptic
mechanisms by which neurons communicate and modulate their
electrical activities (Fig. 5) (Kuksis and Ferguson, 2017). These

A

B
–69 mV 10 mV

25 s

10 mV
–67 mV

50 s

Fig. 5. A graphical representation of whole-cell patch clamp
electrophysiology readings. In this image, subfornical organ neurons from
rat brains are being exposed to 10 nmol l−1 nesfatin-1, an anorexigenic
neuropeptide, at the time frame indicated by the line under the graph. When
exposed, neurons can either become slightly depolarized, which is associated
with an increase in firing frequency (A) or slightly hyperpolarized, which is
associated with a decrease in firing frequency (B). Adapted with permission
from Kuksis and Ferguson (2017).
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readings can be performed in a few ways depending on the
goal of the study, including intracellular versus extracellular
electrophysiological recording (Matthews and Lee, 1991), whole-
cell versus whole network (Beenhakker et al., 2004; Kuksis and
Ferguson, 2014; Qiu et al., 2016; Zhao et al., 2016) or in vitro versus
in vivo (Beenhakker et al., 2004; Li et al., 2016; Marder and Bucher,
2007; Nusbaum et al., 2017). In terms of neurological studies, in
vitro whole-cell recordings are the most common, although in vivo
live-animal recordings, which are inherently more difficult, are
becoming more refined (Scanziani and Häusser, 2009). Crustacean
model systems have been used heavily for electrophysiological
studies (Daur et al., 2016; Dickinson et al., 2016; Otopalik et al.,
2017). For example, the effects of neuromodulators on the same
neuronal circuit was explored for the Jonah crab gastric mill motor
pattern, which was interestingly explained by using a mathematical
model (Kintos et al., 2016). In general, to better understand neuronal
modulation at the single-neuron and network level, crustaceans
provide an excellent model to derive detailed knowledge about
synaptic mechanism and neuronal connection owing to their
possession of a much simplified system compared with the
mammalian system (Marder et al., 2017). Interestingly, the
coupling of electrophysiological probes for simultaneous
monitoring of other chemicals has been incorporated recently.
This could include selective applications (e.g. oxygen, glucose) (Li
et al., 2016) or could be more global, such as microdialysis, which
would allow for direct dosing of neuropeptides (Szabo et al., 2011).
Notably, some researchers believe that electrophysiology, while
never replaceable, might be overshadowed or combined with other
optical imaging techniques that allow localization of the
neurological signals (Scanziani and Häusser, 2009). One can
postulate that combining the temporal resolution of classical
electrophysiology and spatial resolution of optical imaging could
lead to significant discoveries in neuroscience.

Measuring neuropeptide levels
Physiological changes related to neuropeptide actions are most
commonly studied in vivo by performing quantitative analyses on
the whole organism. It should be noted that this can be the first step
in many cases to understanding the function of a peptide, as it might
not be known that a neuropeptide is involved in a process until it is
administered or a condition is applied (e.g. a change in environment)
(Zhang et al., 2016). After the organism has been exposed to the
neuropeptide or changed condition, it can be euthanized and the
tissues of interest collected for quantitative comparison (Abels et al.,
2016). Alternatively, the tissue can be removed from the animal and
incubated before analysis (Peng et al., 2016). Classically, this has
been performed for individual proteins by western blotting, which is
still widely reported in the current literature (Bayerl et al., 2016; Liu
et al., 2016a). Owing to the typically small size of neuropeptides,
western blotting is normally used to assess other, related protein
changes or expression of neuropeptide receptors (Bayerl et al.,
2016; Liu et al., 2016b). Other complementary examples of a
targeted technique are enzyme-linked immunosorbent assay
(ELISA) (Bilgic et al., 2016; Javadian et al., 2016) and use of
radioactively labeled ligand and a γ-counter (Dhuria et al., 2016).
While these methods are excellent if one has a target of interest, a
non-biased global view of the dynamic changes of all the
neuropeptides is often needed to understand fully the role of
neuropeptides and their possible function at the system level.
With the advancement of technology, MS is becoming a useful

addition to functional studies as it is able to reveal changes in
neuropeptide levels that might correlate with function. This

technique is especially attractive for analysis of organisms without
a sequenced genome, as no prior knowledge of the molecule, such
as the metabolite, protein or peptide, is needed. To highlight some
key areas of success, crustacean neuropeptide research has benefited
from MS, allowing researchers to quantify several neuropeptide
changes arising from stress caused by changes in salinity or
temperature (Chen et al., 2014; Zhang et al., 2015). Microdialysis of
neuropeptides has also been coupled to MS, and several reviews
highlight considerations for coupling these two techniques
(OuYang et al., 2015b; Schmerberg and Li, 2013a). Multiplexed
quantification beyond duplex has been implemented in proteomics
(Frost et al., 2015; Wang et al., 2010; Xiang et al., 2010). In this
technique, by using different combinations of stable isotopes (i.e.
13C, 15N, 2H and 18O), samples are differentially labeled prior to
being mixed and analyzed together during the MS. It is expected
that multiplexing will be applied more commonly in neuropeptide
analysis of multiple samples (Bark et al., 2009; Che and Fricker,
2005). Although the use ofMS is attractive, the depth at which it can
profile depends upon many instrument characteristics, such as
analysis time, resolution and mass range. Using an analyte target list
can increase neuropeptidomic coverage, although sensitivity and
interfering species can introduce difficulties. Owing to the natural
complexity of biological samples, the coupling of separations to MS
has not only improved detection but also enabled accurate
quantification. This coupling includes capillary electrophoresis
(CE), LC or IMS (Buchberger et al., 2015; Sturm et al., 2014; Zhong
et al., 2014) before MS detection. By reductive dimethylation of
comparative samples before CE separation, it has been shown that
neuropeptides can be separated and quantified accurately, allowing
for more-in-depth profiling (Warkiani et al., 2016; Zhang et al.,
2012). Furthermore, new instrument methods, such as analysis at
the MS3 level, have helped facilitate accurate quantification (Ting
et al., 2011). It should be noted that, from these data, individual
peptides can be selected for further analysis and validation by the
above, targeted, methods. Finally, MS data are inherently more
complicated, and the use and development of appropriate software
to predict, identify or quantify is challenging, but necessary, for
neuropeptidomics to continue progressing (Fälth et al., 2006; Hook
and Bandeira, 2015; Ma et al., 2003).

Upon understanding the peptide changes, gene analysis can be
conducted to help provide information about the global impact on
the plasticity of the system. Although the specific neuropeptide, its
propeptide and its pre-propeptide cannot be differentiated from each
other at the transcript level, global gene analysis is most easily
achieved by measuring the mRNA changes by using a quantitative
real-time PCR (qPCR) technique (Caers et al., 2016; Peng et al.,
2016). This approach differs from western blotting and ELISAs, the
latter of which measures the translated peptide but does not require
antibodies. By using qPCR, it has been shown that dosing of
amphetamine not only affects rat food intake but also affects
hypothalamic mRNA levels of neuropeptide Y (Chu et al., 2016).
While more mRNA usually means enhanced gene expression,
protein levels do not always correlate with the mRNA data, and the
use of an orthogonal method (see above) should be performed to
verify any conclusions. This is true for all of the methods above, as
all of them have different advantages and disadvantages.

Theuseofmodifiedpeptide-gatedchannels asa tool to study
neuroscience
The effect of a neuropeptide is ultimately determined by its
receptor. While GPCRs mediate slow and more-modulatory
neurotransmission by changing the membrane potential, ion
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channel receptors, by contrast, mediate fast and transient
neurotransmission, rapidly depolarizing or hyperpolarizing the
postsynaptic membrane. It has been common knowledge for
decades that neuropeptides mainly bind to and activate GPCRs,
rather than ion channel receptors. There are now a few exceptions to
this rule: ion channels directly activated by neuropeptides have been
cloned and functionally characterized from different snails
(molluscs) and the freshwater polyp Hydra (Cnidaria),
unambiguously demonstrating the existence of ion channel
receptors for neuropeptides in different animal phyla (Fig. 6).
Moreover, genomic data have revealed the presence of related
channels in other phyla, and electrophysiological data suggest the
existence of a peptide-gated Cl− channel in the nematode Ascaris
suum (Holden-Dye et al., 1997; Purcell et al., 2002a,b). Thus, we
speculate that the distribution of peptide-gated channels is at present
vastly underestimated and that they might mediate some of the
physiological functions of neuropeptides in several animals; maybe
even in humans, although this is, at present, thought to be unlikely.
Here, we will briefly describe the discovery of the known peptide-
gated channels, introduce their properties and then focus on how
they might be developed into tools for neuroscience.
The first observations of a peptide-gated ion channel were made

by Cottrell and co-workers, who showed that the cerebral C2 neuron
of the snail Helix aspersa is rapidly excited by the neuropeptide
FMRFamide (Cottrell et al., 1990; Green et al., 1994). Peptides
related to FMRFamide, RFamide neuropeptides, are found in many
animals. The excitation was fast and also observed in outside-out
patches containing 5′-O-(2-thiophosphate), which blocks G-
protein-coupled responses, in the patch pipette (Green et al.,
1994). These results strongly suggested that FMRFamide directly
activated ion channels in these neurons. The currents were Na+-
selective and sensitive to the diuretic amiloride (Green et al., 1994).
These biophysical and pharmacological properties are reminiscent
of the epithelial Na+ channel (ENaC) from vertebrates, and, in 1995,
by means of homology to ENaC, the FMRFamide-gated Na+

channel (FaNaC) was cloned from H. aspersa (Lingueglia et al.,

1995) – the first peptide-gated channel. A single FaNaC subunit is
sufficient to produce functional channels with properties similar to
the native channel in C2 neurons: they are Na+ selective and
sensitive to amiloride (EC50=0.6 µmol l−1; Table 2) (Lingueglia
et al., 1995). Although it was reported that FaNaC is a tetramer
(Coscoy et al., 1998), there is now compelling evidence from
crystallization of closely related acid-sensing ion channels (ASICs)
(Jasti et al., 2007), as well as from single-molecule imaging (Bartoi
et al., 2014; Chen et al., 2015), that channels of the degenerin
(DEG)/ENaC gene family have a trimeric stoichiometry (Fig. 6A).
In addition, species orthologs of FaNaC have been cloned from
three other molluscs, including Aplysia (Furukawa et al., 2006;
Jeziorski et al., 2000; Perry et al., 2001), but so far no additional
subunits have been cloned. Thus, although it cannot be ruled out
formally that the native channel contains other subunits, it is likely
that FaNaC functions as a homotrimer. Table 2 provides an
overview of the properties of known peptide-gated channels.

In 2007, by means of homology to ENaC and FaNaC, four related
subunits were cloned from the freshwater polyp Hydra (Golubovic
et al., 2007), which belongs to the ancient phylum Cnidaria. It was
found that two of them, when co-expressed in a heterologous
expression system, formed an ion channel that was directly activated
by two neuropeptides (Golubovic et al., 2007), which had been
previously isolated from the Hydra nervous system using a RIA
(Moosler et al., 1996). Like FaNaC, the channel also conducts Na+

and therefore was named the Hydra Na+ channel (HyNaC). These
two neuropeptides, Hydra-RFamides I and II, share a C-terminal
RFamide group with FMRFamide, the ligand of FaNaC. HyNaC is
not the species ortholog of FaNaC; however, as it is more closely
related to mammalian ASICs than to FaNaC or ENaC (Golubovic
et al., 2007), it is likely that peptide-gated channels are ancient and
evolved before the cnidarian–bilaterian split. Three years after the
identification of these neuropeptides, another HyNaC subunit was
cloned that assembles with the two previously cloned subunits,
suggesting that the native channel is a heterotrimer containing three
different subunits (Dürrnagel et al., 2010). In contrast to FaNaC,

ClosedA

B C

Open

RFamide

+ EGTA

0.2 μA
20 s

+ BAPTA

h × ν

1 μM RF I

Fig. 6. Properties of peptide-gated HyNaCs. (A) Left,
cartoon illustrating the three-dimensional structure of a
channel. The ligand-binding site is unknown and is drawn
here at the interface of two subunits for illustration. Right,
HyNaCs can be either open or closed. The equilibrium
between these two conformations is shifted by binding of a
RFamide peptide (blue) to the extracellular domain.
(B) HyNaCs can be repeatedly activated by their ligand,
Hydra RFamide I (RF I), and do not desensitize. The
inward current is carried by Na+ and Ca2+ (orange circles)
Used with permission from Dürrnagel et al., 2012.
(C) Cartoon illustrating how a peptide covalently linked to
the channel could be moved into and out of its binding site
by application of light via a photoisomerizable linker
(a ‘light-switch’, red).
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HyNaC is an unselective cation channel with a high Ca2+

permeability (Dürrnagel et al., 2012) (Table 2). Soon after, all 12
DEG/ENaCs of Hydra were cloned, and it was shown that Hydra
likely contains at least six different functional HyNaCs (Assmann
et al., 2014). All are heterotrimers consisting of three different
subunits activated by Hydra-RFamides I and II, and all are
unselective cation channels (Assmann et al., 2014) (Table 2). It is
not clear why Hydra evolved such a variety of peptide-gated
channels with similar properties, but differential targeting and
ligand affinity are two possibilities.
ISH revealed that two of the six HyNaCs are most likely

expressed in epitheliomuscular cells at the oral side of the
tentacle base, two at the aboral side and two in the foot region
(Assmann et al., 2014). Application of amiloride or diminazene,
two inhibitors of HyNaCs (Table 2), delayed the feeding reaction
of living Hydra (Assmann et al., 2014; Dürrnagel et al.,
2010), which is characterized by a bending of the tentacles.
Collectively, these results suggest that the Hydra RFamide
peptides are released at neuromuscular junctions and that HyNaCs
contribute to fast neuromuscular transmission (Gründer and
Assmann, 2015).
Usually, ligand-gated ion channels desensitize in the continued

presence of the ligand. This feature, together with rapid re-uptake or
hydrolysis of small-molecule transmitters, makes transmission with
ligand-gated channels transient. HyNaCs, by contrast, could also
mediate longer-lasting depolarization of the postsynapticmembrane –
they do not desensitize (Dürrnagel et al., 2012) (Fig. 6B), and there
is no known rapid re-uptake mechanism for their ligand. In
combination with their high Ca2+ permeability, these features could
endow HyNaC-expressing cells with an efficient entry path for
extracellular Ca2+, which could be important for muscle contraction
(Gründer and Assmann, 2015).
DEG/ENaCs with high levels of sequence similarity to either

FaNaC or HyNaCs are present in several genomes, for example in
that of Nematostella vectensis, a cnidarian that belongs to the
subphylum Anthozoa that is not closely related to Hydrozoans, and
in that of the placozoan Trichoplax adhaerens (Gründer and
Assmann, 2015). As T. adhaerens does not contain a nervous
system, the presence of putative peptide-gated channels in this
organism suggests that the channel–peptide-ligand system predated
the emergence of nervous systems andmight have a role for example
in paracrine signaling. Molecular cloning and functional analysis of
these channels will improve our understanding of the physiological
function of peptide-gated channels.
In addition to their importance in understanding neurotransmission

in different organisms, peptide-gated ion channels might also be
modified into interesting tools for neuroscience. For example, FaNaC
has been used as a reporter of neuropeptide release that achieves high
temporal resolution (Whim and Moss, 2001). FMRFa has been used

to tag a neuropeptide prohormone, and FaNaC has acted as a reporter
to monitor release of FMRFa and thereby also of the tagged
neuropeptide (Whim and Moss, 2001).

In another example, it has been shown that heterologous
expression of FaNaC in mammalian hippocampal neurons
provides a means to depolarize the neurons and induce bursts of
action potentials upon focal application of FMRFa (Schanuel et al.,
2008). FaNaC has a somato-dendritic localization and is absent
from axons (Schanuel et al., 2008). As FMRFa is not present in the
mammalian nervous system, and endogenous RFamides apparently
do not activate FaNaC (Schanuel et al., 2008), it is in principle
possible to activate specific subsets of neurons selectively in intact
nervous tissue. Transgenic expression of FaNaC under the control of
specific promoters would enable driving of its expression only in
specific subsets of neurons in living animals. Moreover, the
possibility to ‘cage’ FMRFa chemically with a photolabile
protecting group allows its release within milliseconds upon
exposure to both single- and two-photon light sources (Janett
et al., 2015) to rapidly excite cells expressing FaNaC. As HyNaCs
are obligate heteromers, their heterologous expression in neurons is
more difficult, but would allow expression of a foreign ion channel
with high Ca2+ permeability. The cloning of further peptide-gated
channels, such as the Cl– channel from A. suum, will further increase
the toolbox of peptide-gated channels.

A better understanding of the molecular binding site of peptide
ligands on their ion channel receptors could also allow the future
design of small molecules that gate the channels independently of
peptides. This might allow peptide-gated channels to be employed,
much like some GPCRs, as ‘designer’ receptors exclusively
activated by designer drugs (DREADDs) (Roth, 2016).

The identification of the peptide-binding site might also allow the
covalent attachment of FMRFa (or other peptides) close to its
binding site via a photoisomerizable molecule (a ‘photoswitch’)
such that light would move the peptide in and out of its binding site
to open and close the channel (Berlin and Isacoff, 2017; Kramer
et al., 2009) (Fig. 6C). Azobenzenes have been successfully used as
such photoswitches, as they undergo fast trans-to-cis isomerization,
much like retinal, upon illumination with near-UV light (Berlin and
Isacoff, 2017). They can be coupled via maleimides to single
cysteine residues engineered into the primary sequence of a channel.
High-resolution structures are not only useful for the identification
of the peptide-binding site but also a pre-requisite for the
identification of suitable attachment sites of peptide ligands close
to the binding site. As chicken ASIC1, a close homolog of HyNaCs,
has been crystallized (Jasti et al., 2007), appropriate homology
models of the HyNaC structure, and perhaps also of the FaNaC
structure, could feasibly be constructed. Such photo-sensitive
channels would allow experimenters to control the membrane
potential of a neuron by light instead of a peptide ligand. Examples

Table 2. Properties of peptide-gated ion channels

Channel Gene family Stoichiometry Ligand Ligand affinity Kinetics Ion selectivity Pharmacology

FaNaC DEG/ENaC Homo-trimer FMRF-NH2 2–70 µmol l−1a,b Partially desensitizing
(τ ∼1 min)c

Na+-selective
PNa/PK>10a

EC50(amil)=0.6 µmol l−1a

HyNaCs DEG/ENaC Hetero-trimere,f pQWLGGRF-NH2

pQWFNGRF-NH2

0.04–>30 µmol l−1e,f Non-desensitizingf,g Cation-unselective
PNa/PK=3g

PCa/PNa=4g

EC50(amil)=100 µmol l−1e

EC50(dimi)=0.05–5 µmol l−1f

Ascaris suum
channel

Unknown Unknown KPNFLRF-NH2

(or similar)
0.001–0.1 µmol l−1h,i Non-desensitizingh,i Cl–-selectiveh,i

Amil, amiloride; dimi, diminazene.
aLingueglia et al., 1995, bJeziorski et al., 2000, cKodani and Furukawa, 2010, dGolubovic et al., 2007, eDürrnagel et al., 2010, fAssmann et al., 2014, gDürrnagel
et al., 2012, hHolden-Dye et al., 1997, iPurcell et al., 2002a.
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that such a synthetic optogenetics approach (Berlin and Isacoff,
2017) is feasible have been provided, among others, for ionotropic
glutamate and GABAA receptors (Lin et al., 2015; Volgraf et al.,
2006). Clearly, peptide-gated ion channels have great potential to
serve as useful tools for neuroscience.

Concluding remarks
It is clear that neuropeptide research has benefited tremendously
from the substantial advancements of technology for neuropeptide
structural elucidation, localization mapping and functional
understanding, although any single technique itself still does not
provide us with all the answers we seek. A particularly promising
technique is MS imaging with tandem MS, but sensitivity issues
might be limiting when single-cell resolution is needed. In general,
the development of the MS-based neuropeptidomics technique has
proven to be the most influential technique for analyzing
neuropeptides in a high-throughput and global manner, but other,
often classical, methods provide validation and confirmation of all
results generated byMS. Owing to its ability for global analysis, MS
will likely be a central tool for all future neuropeptide studies,
especially with the continued development of new methodology
and technology. Furthermore, another area that has proven to be
extremely influential has been computational prediction and
processing. Without sophisticated bioinformatics tools, not only
would the identification of novel neuropeptides be slow, but MS
datasets, which are naturally large and complex, would be extremely
difficult to process and interpret. At the moment, the pace of
investigating the neuropeptidome will continue to be set by the
development of both of these areas, although new techniques that
are complementary or capable of providing structure, function and
localization information are welcome additions to the study of
neuropeptides. In addition, peptide-gated ion channels might be
modified into promising new tools for neuroscience. Finally, the
integration of multiple bioanalytical techniques and molecular
neuropharmacological tools will drive the field of neuropeptide
research towards new frontiers.
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Dürrnagel, S., Falkenburger, B. H. and Gründer, S. (2012). High Ca(2+)
permeability of a peptide-gated DEG/ENaC from Hydra. J. Gen. Physiol. 140,
391-402.

Edman, P. (1950). Method for determination of the amino acid sequence in
peptides. Acta Chem. Scand. 4, 283-293.

Elphick, M. R. andMirabeau, O. (2014). The evolution and variety of RFamide-type
neuropeptides: insights from deuterostomian invertebrates. Front. Endocrinol.
(Lausanne) 5, 93.
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Shen, Y., Tolić, N., Xie, F., Zhao, R., Purvine, S. O., Schepmoes, A. A., Ronald,
J. M., Anderson, G. A. and Smith, R. D. (2011). Effectiveness of CID, HCD, and
ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide
identification methods. J. Proteome Res. 10, 3929-3943.

Singh, O., Kumar, S., Singh, U., Kumar, V., Lechan, R. M. and Singru, P. S.
(2016). Cocaine- and amphetamine-regulated transcript peptide (CART) in the
brain of zebra finch, Taeniopygia guttata: Organization, interaction with
neuropeptide Y, and response to changes in energy status. J. Comp. Neurol.
524, 3014-3041.

Steen, H. and Mann, M. (2004). The abc’s (and xyz’s) of peptide sequencing. Nat.
Rev. Mol. Cell Biol. 5, 699-711.

Strohalm, M., Strohalm, J., Kaftan, F., Krásný, L., Volny, M., Novák, P., Ulbrich,
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