27 research outputs found

    Recovery of functional proteins from herring (Clupea harengus) light muscle by an acid or alkaline solubilization process.

    No full text
    Proteins from herring (Clupea harengus) light muscle were extracted using acidic or alkaline solubilization; 92 and 89% of the initial muscle proteins were solubilized at pH 2.7 and 10.8, respectively, of which 96 and 94% were recovered during precipitation at pH 5.5. Consistency of the pH-adjusted muscle homogenates increased with increased raw material age and homogenization intensity; it declined following holding on ice. Some hydrolytic myofibrillar protein degradation occurred during cold storage of the acidified (pH 2.7) homogenates. With alkalized homogenates, hydrolysis was negligible. The total lipid content changed from 0.13 g/g of protein in the muscle to 0.04 g/g of protein in both the acid- and alkali-produced protein isolates. Corresponding values for the phospholipid content were from 0.037 to 0.02 g/g of proteins. Acid- and alkali-produced proteins made gels with equal strain and color. Stress values were equal or lower in acid- versus alkali-produced protein gels. When ice-stored raw material was used, strain and stress values of gels were reduced

    Recovery of functional proteins from herring (Clupea harengus) light muscle by an acid or alkaline solubilization process.

    No full text
    Proteins from herring (Clupea harengus) light muscle were extracted using acidic or alkaline solubilization; 92 and 89% of the initial muscle proteins were solubilized at pH 2.7 and 10.8, respectively, of which 96 and 94% were recovered during precipitation at pH 5.5. Consistency of the pH-adjusted muscle homogenates increased with increased raw material age and homogenization intensity; it declined following holding on ice. Some hydrolytic myofibrillar protein degradation occurred during cold storage of the acidified (pH 2.7) homogenates. With alkalized homogenates, hydrolysis was negligible. The total lipid content changed from 0.13 g/g of protein in the muscle to 0.04 g/g of protein in both the acid- and alkali-produced protein isolates. Corresponding values for the phospholipid content were from 0.037 to 0.02 g/g of proteins. Acid- and alkali-produced proteins made gels with equal strain and color. Stress values were equal or lower in acid- versus alkali-produced protein gels. When ice-stored raw material was used, strain and stress values of gels were reduced
    corecore