78 research outputs found

    Effect of Seed Morph and Light Level on Growth and Reproduction of the Amphicarpic Plant \u3cem\u3eAmphicarpaea edgeworthii\u3c/em\u3e (Fabaceae)

    Get PDF
    Amphicarpic plants produce aerial and subterranean fruits on an individual plant, and these heteromorphic diaspores give rise to plants that differ in growth and ecology. Amphicarpaea edgeworthii is a summer annual amphicarpic species that grows over a range of light levels. We aimed to compare the response to shading intensity of plants of A. edgeworthii grown throughout their life cycle from aerial seeds (ASP) and from subterranean seeds (SSP). We hypothesized that vegetative and reproductive growth of plants from ASP and SSP respond differently to light. Plants were grown from ASP and SSP under 0, 46, 71 and 90% shading intensities. With plant height as a covariate, vegetative biomass of ASP and SSP did not differ. Leaf area and seed production of SSP were greater and internode length less than they were for ASP in all shading intensities. Aerial and subterranean seed yield, seed mass and number for both ASP and SSP were highest in full light. Aerial seed yield was affected more than subterranean seed yield by shading intensity. The growth and reproductive responses of ASP and SSP of A. edgeworthii may be adaptive to the range of low to high light environments in which this species grows

    Differential Atrophy in the Hippocampal Subfield Volumes in Four Types of Mild Dementia

    No full text
    Objectives To investigate the bilateral hippocampal subfield volumetric differences in four types of mild dementia, namely typical Alzheimer's disease (tAD), dementia with Lewy bodies (DLB), semantic dementia (SD), and posterior cortical atrophy (PCA), to assist differential diagnosis. Methods One hundred three participants, including 22 tAD, 34 SD (17 left SD and 17 right SD), 15 DLB, 12 PCA patients, and 20 normal controls (NC), were recruited. All subjects received standard neuropsychological assessments and magnetic resonance imaging (MRI). The hippocampal subfields were automatically segmented via Freesurfer. The study compared the volumetric differences and used the receiver operating characteristic (ROC) curves to estimate the efficacy of each hippocampal subfield to distinguish between groups. Spearman correlation analysis was used to investigate the relationship between memory recall scores and hippocampal subfield volumes. Results The hippocampal subfield atrophy varied in different groups: tAD, SD, and PCA patients had subregional atrophy in bilateral hippocampi compared to NC, and DLB patients showed preserved volumes; left SD patients suffered the most severe atrophy of the left hippocampus, and right SD patients were atrophied mostly in the right hippocampus. There was no significant difference in the volume of hippocampal subregions between tAD and PCA subjects, but the former tended to be atrophied more asymmetrically. ROC analysis showed that, for discrimination, the areas under the curve (AUC) of some subfields were larger than the total hippocampus, but none observed significant difference. In addition, immediate recall scores were correlated to left CA1, CA2/3, CA4/DG, subiculum, and presubiculum (p< 0.05), and delayed recall scores were strongly related to bilateral CA2/3, CA4/DG, subiculum, and presubiculum (r= 0.38-0.52,p< 0.05). Conclusion Differential atrophy patterns in the bilateral hippocampal subfield volumes could serve the differential diagnosis in patients with different causes of mild dementia: left CA1 for tAD; left presubiculum for LSD; right CA4/DG, right presubiculum, and right subiculum for RSD; CA4/DG and right CA2/3 for DLB; right CA2/3 and right CA4/DG for PCA. Additionally, several hippocampal subfield volumes were significantly associated with memory scores, further highlighting the essential role of the hippocampus in memory decline

    Taxonomic effect on plant base concentrations and stoichiometry at the tips of the phylogeny prevails over environmental effect along a large scale gradient

    No full text
    Despite the well-known importance of all elements to plant growth and nutrient fluxes in ecosystems, most studies to date have been restricted to the roles of foliar nitrogen (N) and phosphorus (P). Much less is known about cycling and pools of base cations in ecosystems and the drivers of variation in cation concentrations among plant species, even though these cations are paramount for plant and ecosystem function. In particular, little is known about the contributions of taxonomic position and environmental variation on base cation concentrations. The extent to which concentrations of elements in plants are determined by phenotypic response to their availability in current environments versus by inherent species-specific uptake and processing adaptations, should be most directly evident at the tips of the phylogeny, where inherent variation among species should reflect relatively recent adaptation to environmental variation since their common ancestry. To test this hypothesis, we explored the geographic pattern and the effects of taxonomy, climate and soil on concentrations and stoichiometry of the base cations potassium (K), sodium (Na), calcium (Ca) and magnesium (Mg) across a lineage of Artemisia species and their close relatives across northern China. We found that species identity explained the largest proportion of the total variance for all four base cations (38.3-53.8%) and their stoichiometry (35.2-59.6%). K, Na and Ca concentrations increased significantly with climate seasonality, while Ca concentration decreased with annual temperature and precipitation. Plant K concentration, K:Ca and K:Mg were negatively correlated with soil organic carbon concentrations, but positively with soil pH. Our results suggest that taxonomy still needs to be fully considered for interpreting variation in vegetation nutrition and stoichiometry along broad geographical gradients even for species at the tips of the phylogeny

    Time of impact of fragment P2 of comet SL 9 on Jupiter

    No full text

    Data from: C:N:P stoichiometry of Artemisia species and close relatives across northern China: unraveling effects of climate, soil and taxonomy

    No full text
    1. Carbon (C), nitrogen (N) and phosphorus (P) stoichiometries play critical roles in the function and structure of ecosystems by affecting important ecological processes. Yet, most studies to date have concentrated on foliar stoichiometry of phylogenetically distantly related species. 2. Here, we hypothesized that (i) plant stoichiometry of closely related species still shows biogeographic patterns because of the geographic patterns of abiotic environment at the regional scale and (ii) even related species still differ strongly in their stoichiometry owing to inherent differences in the absorption and retention of different elements. 3. To test the hypotheses, we analysed the C:N:P stoichiometry of 48 species of Artemisia and its close relatives from 65 sites across northern China. 4. Elemental concentrations and stoichiometry had no correlation with latitude or longitude but showed clear altitudinal trends. Climate had a weak effect on plant elemental concentrations and stoichiometry but not on C concentration. Soil chemistry had significant effects on C and P concentrations, C:P and N:P. Nested models revealed that species identity accounted for more than 30% of the total variance of all elemental concentrations and stoichiometric ratios, and different species responded differently to environmental gradients. 5. Synthesis. Our results highlight that even closely related species can vary importantly in plant elemental stoichiometry. This suggests that ecologists and global change researchers should be careful not to simply take a species’ stoichiometry as representative of an entire taxonomic group for upscaling of plant chemical responses to climatic and edaphic variation in our fast changing world
    • …
    corecore