18 research outputs found

    Dermatophytosis in three colony-born spotted hyenas

    No full text

    Differential gene expression induced by exposure of captive mink to fuel oil: A model for the sea otter

    No full text
    Free-ranging sea otters are subject to hydrocarbon exposure from a variety of sources, both natural and anthropogenic. Effects of direct exposure to unrefined crude oil, such as that associated with the Exxon Valdez oil spill, are readily apparent. However, the impact of subtle but pathophysiologically relevant concentrations of crude oil on sea otters is difficult to assess. The present study was directed at developing a model for assessing the impact of low concentrations of fuel oil on sea otters. Quantitative PCR was used to identify differential gene expression in American mink that were exposed to low concentrations of bunker C fuel oil. A total of 23 genes, representing 10 different physiological systems, were analyzed for perturbation. Six genes with immunological relevance were differentially expressed in oil-fed mink. Interleukin-18 (IL-18), IL-10, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and complement cytolysis inhibitor (CLI) were down-regulated while IL-2 was up-regulated. Expression of two additional genes was affected; heat shock protein 70 (HSP70) was up-regulated and thyroid hormone receptor (THR) was down-regulated. While the significance of each perturbation is not immediately evident, we identified differential expression of genes that would be consistent with the presence of immune system-modifying and endocrine-disrupting compounds in fuel oil. Application of this approach to identify effects of petroleum contamination on sea otters should be possible following expansion of this mink model to identify a greater number of affected genes in peripheral blood leukocytes

    Illustrated State-of-the-Art Capsules of the ISTH 2019 Congress in Melbourne, Australia : Plasminogen in wound healing

    No full text
    The 27th Congress of the International Society of Thrombosis and Haemostasis (ISTH) is an international conference held July 6-10, 2019, in Melbourne, the capital of the state of Victoria, Australia. The ISTH congress has previously been held every other year, with the Scientific and Standardization Committee (SSC) meeting held annually, until 2019 when it became one combined annual meeting of the ISTH and SSC. The conference covers clinical and basic aspects of hemostasis and thrombosis, and this year includes 5 Plenary lectures and >50 State of Art (SOA) lectures, presented by internationally recognized speakers, as well as numerous oral session and poster presentations selected from submitted abstracts, including many early career and reach the world support recipients. This SOA review article in RPTH contains concise Illustrated Review Articles or 'Capsules' consisting of short text, three references and a figure, with topics including stroke, cancer-associated thrombosis, hemophilia, coagulation, the interface between infection and inflammation, and in the experimental and discovery areas, megakaryocyte biology and platelet production, structure-function of key receptors and coagulation factors, and emerging new roles for thrombotic/hemostatic factors. Together, these articles highlight novel findings which will advance knowledge and with the potential to change clinical practice and improve outcomes. It is hoped that conference attendees and followers will enjoy utilizing the images for ongoing education and during the conference for live tweeting during sessions, to assist in the broadcasting and promotion of the science to those unable to attend, or who have chosen to attend a concurrent session. Use #IllustratedReview and #ISTH2019 on social media

    Illustrated State-of-the-Art Capsules of the ISTH 2019 Congress in Melbourne, Australia

    No full text
    The 27th Congress of the International Society of Thrombosis and Haemostasis (ISTH) is an international conference held July 6-10, 2019, in Melbourne, the capital of the state of Victoria, Australia. The ISTH congress has previously been held every other year, with the Scientific and Standardization Committee (SSC) meeting held annually, until 2019 when it became one combined annual meeting of the ISTH and SSC. The conference covers clinical and basic aspects of hemostasis and thrombosis, and this year includes 5 Plenary lectures and >50 State of Art (SOA) lectures, presented by internationally recognized speakers, as well as numerous oral session and poster presentations selected from submitted abstracts, including many early career and reach the world support recipients. This SOA review article in RPTH contains concise Illustrated Review Articles or 'Capsules' consisting of short text, three references and a figure, with topics including stroke, cancer-associated thrombosis, hemophilia, coagulation, the interface between infection and inflammation, and in the experimental and discovery areas, megakaryocyte biology and platelet production, structure-function of key receptors and coagulation factors, and emerging new roles for thrombotic/hemostatic factors. Together, these articles highlight novel findings which will advance knowledge and with the potential to change clinical practice and improve outcomes. It is hoped that conference attendees and followers will enjoy utilizing the images for ongoing education and during the conference for live tweeting during sessions, to assist in the broadcasting and promotion of the science to those unable to attend, or who have chosen to attend a concurrent session. Use #IllustratedReview and #ISTH2019 on social media.status: publishe

    Point absorbers in Advanced LIGO

    Full text link
    Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nano-meter scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduces the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power build-up in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and hence, limit GW sensitivity, but suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises.Comment: 49 pages, 16 figures. -V2: typographical errors in equations B9 and B10 were corrected (stray exponent of "h" was removed). Caption of Figure 9 was corrected to indicate that 40mW was used for absorption in the model, not 10mW as incorrectly indicated in V

    Point absorbers in Advanced LIGO

    No full text
    corecore