1,085 research outputs found

    Characterizing the Coherence of Bose-Einstein Condensates and Atom Lasers

    Get PDF
    For a dilute, interacting Bose gas of magnetically-trapped atoms at temperatures below the critical temperature T 0 for Bose-Einstein condensation, we determine the second-order coherence function g (2)(r 1, r 2) within the framework of a finite-temperature quantum field theory. We show that, because of the different spatial distributions of condensate and thermal atoms in the trap, g (2)(r 1, r 2) does not depend on |r 1 - r 2| alone. This means that the experimental determinations of g (2) reported to date give only its spatial average. Such an average may underestimate the degree of coherence attainable in an atom laser by judicious engineering of the output coupler

    Functional Alignment of Regulatory Networks: A Study of Temperate Phages

    Get PDF
    The relationship between the design and functionality of molecular networks is now a key issue in biology. Comparison of regulatory networks performing similar tasks can provide insights into how network architecture is constrained by the functions it directs. Here, we discuss methods of network comparison based on network architecture and signaling logic. Introducing local and global signaling scores for the difference between two networks, we quantify similarities between evolutionarily closely and distantly related bacteriophages. Despite the large evolutionary separation between phage λ and 186, their networks are found to be similar when difference is measured in terms of global signaling. We finally discuss how network alignment can be used to pinpoint protein similarities viewed from the network perspective

    Repeated applications of farm dairy effluent treated with poly-ferric sulphate did not adversely affect soil phosphorus availability, P fractions and pasture response — a 4-year field plot study

    Get PDF
    Purpose: Land application of farm dairy effluent (FDE) can cause phosphorus contamination of freshwater due to its high nutrient content especially phosphorus (P) in the animal dung. A novel FDE treatment technology has been developed that uses poly-ferric sulphate (PFS) to treat the FDE and recycle water for washing farmyard and reduce the risk of water pollution from P leaching from through the soil. It is important that the application of PFS-treated FDE (TE) does not cause any adverse impacts on soil fertility or plant growth when the TE is applied to the soil. Materials and methods: A multi-year field plot study was conducted to determine the effect of repeat applications of FDE and PFS-treated FDE (TE) on soil P availability, P fractionations, plant yield and nutrient uptake. Eight applications of untreated FDE, TE and water as control were applied to replicated soil plots over the period of 4 years. The soil samples were collected on 1 December 2020, and nine pasture samples were harvested during the 2021–2022 dairy milking season. Measurements included soil chemical properties, soil phosphorous fractionations, plant biomass and plant phosphorus and nitrogen uptake. Results and discussion: The results indicated that the majority of soil fertility indices and soil P fractions had no significant difference between the FDE and TE applications, with the exception of labile P which was significantly higher in the TE (122.7 mg kg‾¹) than in the FDE treatments (103.0 mg kg‾¹) at 0–10-cm soil depth and was also significantly higher in the TE (114.6 mg kg‾¹) than in the FDE treatments (74.0 mg kg‾¹) at 10–20-cm soil depth. Similarly, plant P uptakes and dry matter yields were also the same between the TE and FDE treatments with the average of being 54.4 kg P ha‾¹ and 12.8 t ha‾¹, respectively. Conclusions: Repeated applications of PFS-treated FDE had no adverse effect on soil P availability or plant growth when compared to untreated FDE application and had the potential to benefit soil fertility compared to control

    Treating farm dairy effluent with poly‐ferric sulphate dramatically reduces phosphorus and E. coli leaching through subsurface drains—A physical drainage model study

    Get PDF
    Land application of farm dairy effluent (FDE) may lead to water contamination, by contaminants such as phosphorus (P) and E. coli. A new FDE treatment technology using poly-ferric sulphate (PFS) has been developed to recycle wastewater in FDE for washing the farmyard. A physical drainage model study was conducted to investigate the effect of treating FDE with PFS on phosphorus and E. coli leaching through model subsurface drains. Dissolved reactive phosphorus (DRP) and total phosphorus (TP) leaching losses from untreated effluent (FDE) averaged 3.48 kg P ha¯¹ and 11.44 kg P ha¯¹, respectively. The application of PFS-treated effluent (TE) resulted in significantly lower DRP and TP leaching losses at 0.24 kg P ha¯¹ and 4.52 kg P ha¯¹ for fresh TE and 0.27 kg P ha¯¹ and 6.31 kg P ha¯¹ for TE stored for 3 weeks before application (TE-S). Cumulative DRP lost to drainage water from the TE and TE-S treatments was 93.1% and 92.2% lower than that from the FDE treatments. Compared with the FDE treatment, there was a 98.27% and 99.99% reduction in E. coli in the drainage water from the TE and TE-S treatments. Plant biomass and P uptake were not affected by the effluent treatments. These results indicate that land application of PFS-treated effluent, fresh or stored, on drained pasture soils can produce significant environmental benefits by reducing the concentration and amount of P and E. coli in the drainage water, without adversely impacting plant growth

    Role of the Contralesional vs. Ipsilesional Hemisphere in Stroke Recovery

    Get PDF
    Following a stroke, the resulting lesion creates contralateral motor impairment and an interhemispheric imbalance involving hyperexcitability of the contralesional hemisphere. Neuronal reorganization may occur on both the ipsilesional and contralesional hemispheres during recovery to regain motor functionality and therefore bilateral activation for the hemiparetic side is often observed. Although ipsilesional hemispheric reorganization is traditionally thought to be most important for successful recovery, definitive conclusions into the role and importance of the contralesional motor cortex remain under debate. Through examining recent research in functional neuroimaging investigating motor cortex changes post-stroke, as well as brain-computer interface (BCI) and transcranial magnetic stimulation (TMS) therapies, this review attempts to clarify the contributions of each hemisphere toward recovery. Several functional magnetic resonance imaging studies suggest that continuation of contralesional hemisphere hyperexcitability correlates with lesser recovery, however a subset of well-recovered patients demonstrate contralesional motor activity and show decreased functional capability when the contralesional hemisphere is inhibited. BCI therapy may beneficially activate either the contralesional or ipsilesional hemisphere, depending on the study design, for chronic stroke patients who are otherwise at a functional plateau. Repetitive TMS used to excite the ipsilesional motor cortex or inhibit the contralesional hemisphere has shown promise in enhancing stroke patients' recovery

    Comparison of Methods for Classifying Persistent Post-Concussive Symptoms in Children

    Get PDF
    Pediatric mild traumatic brain injury (pmTBI) has received increased public scrutiny over the past decade, especially regarding children who experience persistent post-concussive symptoms (PPCS). However, several methods for defining PPCS exist in clinical and scientific literature, and even healthy children frequently exhibit non-specific, concussive-like symptoms. Inter-method agreement (six PPCS methods), observed misclassification rates, and other psychometric properties were examined in large cohorts of consecutively recruited adolescent patients with pmTBI (n = 162) 1 week and 4 months post-injury and in age/sex-matched healthy controls (HC; n = 117) at equivalent time intervals. Six published PPCS methods were stratified into Simple Change (e.g., International Statistical Classification of Diseases and Related Health Problems, 10th revision [ICD-10]) and Standardized Change (e.g., reliable change indices) algorithms. Among HC, test-retest reliability was fair to good across the 4-month assessment window, with evidence of bias (i.e., higher symptom ratings) during retrospective relative to other assessments. Misclassification rates among HC were higher (>30%) for Simple Change algorithms, with poor inter-rater reliability of symptom burden across HC and their parents. A 49% spread existed in terms of the proportion of pmTBI patients "diagnosed" with PPCS at 4 months, with superior inter-method agreement among standardized change algorithms. In conclusion, the self-reporting of symptom burden is only modestly reliable in typically developing adolescents over a 4-month period, with additional evidence for systematic bias in both adolescent and parental ratings. Significant variation existed for identifying pmTBI patients who had "recovered" (i.e., those who did not meet individual criteria for PPCS) from concussion across the six definitions, representing a considerable challenge for estimating the true incidence rate of PPCS in published literature. Although relatively straightforward to obtain, current findings question the utility of the most commonly used Simple Change scores for diagnosis of PPCS in clinical settings

    Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR

    Get PDF
    The basic helix–loop–helix (bHLH).PAS dimeric transcription factors have crucial roles in development, stress response, oxygen homeostasis and neurogenesis. Their target gene specificity depends in part on partner protein choices, where dimerization with common partner Aryl hydrocarbon receptor nuclear translocator (Arnt) is an essential step towards forming active, DNA binding complexes. Using a new bacterial two-hybrid system that selects for loss of protein interactions, we have identified 22 amino acids in the N-terminal PAS domain of Arnt that are involved in heterodimerization with aryl hydrocarbon receptor (AhR). Of these, Arnt E163 and Arnt S190 were selective for the AhR/Arnt interaction, since mutations at these positions had little effect on Arnt dimerization with other bHLH.PAS partners, while substitution of Arnt D217 affected the interaction with both AhR and hypoxia inducible factor-1α but not with single minded 1 and 2 or neuronal PAS4. Arnt uses the same face of the N-terminal PAS domain for homo- and heterodimerization and mutational analysis of AhR demonstrated that the equivalent region is used by AhR when dimerizing with Arnt. These interfaces differ from the PAS β-scaffold surfaces used for dimerization between the C-terminal PAS domains of hypoxia inducible factor-2α and Arnt, commonly used for PAS domain interactions

    Association between winter anthocyanin production and drought stress in angiosperm evergreen species

    Get PDF
    Leaves of many evergreen angiosperm species turn red under high light during winter due to the production of anthocyanin pigments, while leaves of other species remain green. There is currently no explanation for why some evergreen species exhibit winter reddening while others do not. Conditions associated with low leaf water potentials (Ψ) have been shown to induce reddening in many plant species. Because evergreen species differ in susceptibility to water stress during winter, it is hypothesized that species which undergo winter colour change correspond with those that experience/tolerate the most severe daily declines in leaf Ψ during winter. Six angiosperm evergreen species which synthesize anthocyanin in leaves under high light during winter and five species which do not were studied. Field Ψ, pressure/volume curves, and gas exchange measurements were derived in summer (before leaf colour change had occurred) and winter. Consistent with the hypothesis, red-leafed species as a group had significantly lower midday Ψ in winter than green-leafed species, but not during the summer when all the leaves were green. However, some red-leafed species showed midday declines similar to those of green-leafed species, suggesting that low Ψ alone may not induce reddening. Pressure–volume curves also provided some evidence of acclimation to more negative water potentials by red-leafed species during winter (e.g. greater osmotic adjustment and cell wall hardening on average). However, much overlap in these physiological parameters was observed as well between red and green-leafed species, and some of the least drought-acclimated species were red-leafed. No difference was observed in transpiration (E) during winter between red and green-leaved species. When data were combined, only three of the six red-leafed species examined appeared physiologically acclimated to prolonged drought stress, compared to one of the five green-leafed species. This suggests that drought stress alone is not sufficient to explain winter reddening in evergreen angiosperms
    corecore