200 research outputs found

    Uncertainty Propagation and Feature Selection for Loss Estimation in Performance-based Earthquake Engineering

    Get PDF
    This report presents a new methodology, called moment matching, of propagating the uncertainties in estimating repair costs of a building due to future earthquake excitation, which is required, for example, when assessing a design in performance-based earthquake engineering. Besides excitation uncertainties, other uncertain model variables are considered, including uncertainties in the structural model parameters and in the capacity and repair costs of structural and non-structural components. Using the first few moments of these uncertain variables, moment matching requires only a few well-chosen point estimates to propagate the uncertainties to estimate the first few moments of the repair costs with high accuracy. Furthermore, the use of moment matching to estimate the exceedance probability of the repair costs is also addressed. These examples illustrate that the moment-matching approach is quite general; for example, it can be applied to any decision variable in performance-based earthquake engineering. Two buildings are chosen as illustrative examples to demonstrate the use of moment matching, a hypothetical three-story shear building and a real seven-story hotel building. For these two examples, the assembly-based vulnerability approach is employed when calculating repair costs. It is shown that the moment-matching technique is much more accurate than the well-known First-Order-Second-Moment approach when propagating the first two moments, while the resulting computational cost is of the same order. The repair-cost moments and exceedance probability estimated by the moment-matching technique are also compared with those by Monte Carlo simulation. It is concluded that as long as the order of the moment matching is sufficient, the comparison is satisfactory. Furthermore, the amount of computation for moment matching scales only linearly with the number of uncertain input variables. Last but not least, a procedure for feature selection is presented and illustrated for the second example. The conclusion is that the most important uncertain input variables among the many influencing the uncertainty in future repair costs are, in order of importance, ground-motion spectral acceleration, component capacity, ground-motion details and unit repair costs

    Real-time Loss Estimation for Instrumented Buildings

    Get PDF
    Motivation. A growing number of buildings have been instrumented to measure and record earthquake motions and to transmit these records to seismic-network data centers to be archived and disseminated for research purposes. At the same time, sensors are growing smaller, less expensive to install, and capable of sensing and transmitting other environmental parameters in addition to acceleration. Finally, recently developed performance-based earthquake engineering methodologies employ structural-response information to estimate probabilistic repair costs, repair durations, and other metrics of seismic performance. The opportunity presents itself therefore to combine these developments into the capability to estimate automatically in near-real-time the probabilistic seismic performance of an instrumented building, shortly after the cessation of strong motion. We refer to this opportunity as (near-) real-time loss estimation (RTLE). Methodology. This report presents a methodology for RTLE for instrumented buildings. Seismic performance is to be measured in terms of probabilistic repair cost, precise location of likely physical damage, operability, and life-safety. The methodology uses the instrument recordings and a Bayesian state-estimation algorithm called a particle filter to estimate the probabilistic structural response of the system, in terms of member forces and deformations. The structural response estimate is then used as input to component fragility functions to estimate the probabilistic damage state of structural and nonstructural components. The probabilistic damage state can be used to direct structural engineers to likely locations of physical damage, even if they are concealed behind architectural finishes. The damage state is used with construction cost-estimation principles to estimate probabilistic repair cost. It is also used as input to a quantified, fuzzy-set version of the FEMA-356 performance-level descriptions to estimate probabilistic safety and operability levels. CUREE demonstration building. The procedure for estimating damage locations, repair costs, and post-earthquake safety and operability is illustrated in parallel demonstrations by CUREE and Kajima research teams. The CUREE demonstration is performed using a real 1960s-era, 7-story, nonductile reinforced-concrete moment-frame building located in Van Nuys, California. The building is instrumented with 16 channels at five levels: ground level, floors 2, 3, 6, and the roof. We used the records obtained after the 1994 Northridge earthquake to hindcast performance in that earthquake. The building is analyzed in its condition prior to the 1994 Northridge Earthquake. It is found that, while hindcasting of the overall system performance level was excellent, prediction of detailed damage locations was poor, implying that either actual conditions differed substantially from those shown on the structural drawings, or inappropriate fragility functions were employed, or both. We also found that Bayesian updating of the structural model using observed structural response above the base of the building adds little information to the performance prediction. The reason is probably that Real-Time Loss Estimation for Instrumented Buildings ii structural uncertainties have only secondary effect on performance uncertainty, compared with the uncertainty in assembly damageability as quantified by their fragility functions. The implication is that real-time loss estimation is not sensitive to structural uncertainties (saving costly multiple simulations of structural response), and that real-time loss estimation does not benefit significantly from installing measuring instruments other than those at the base of the building. Kajima demonstration building. The Kajima demonstration is performed using a real 1960s-era office building in Kobe, Japan. The building, a 7-story reinforced-concrete shearwall building, was not instrumented in the 1995 Kobe earthquake, so instrument recordings are simulated. The building is analyzed in its condition prior to the earthquake. It is found that, while hindcasting of the overall repair cost was excellent, prediction of detailed damage locations was poor, again implying either that as-built conditions differ substantially from those shown on structural drawings, or that inappropriate fragility functions were used, or both. We find that the parameters of the detailed particle filter needed significant tuning, which would be impractical in actual application. Work is needed to prescribe values of these parameters in general. Opportunities for implementation and further research. Because much of the cost of applying this RTLE algorithm results from the cost of instrumentation and the effort of setting up a structural model, the readiest application would be to instrumented buildings whose structural models are already available, and to apply the methodology to important facilities. It would be useful to study under what conditions RTLE would be economically justified. Two other interesting possibilities for further study are (1) to update performance using readily observable damage; and (2) to quantify the value of information for expensive inspections, e.g., if one inspects a connection with a modeled 50% failure probability and finds that the connect is undamaged, is it necessary to examine one with 10% failure probability

    Real-time Bayesian State Estimation of Uncertain Dynamical Systems

    Get PDF
    The focus of this report is real-time Bayesian state estimation using nonlinear models. A recently developed method, the particle filter, is studied that is based on Monte Carlo simulation. Unlike the well-known extended Kalman filter, it is applicable to highly nonlinear systems with non-Gaussian uncertainties. Recently developed techniques that improve the convergence of the particle filter simulations are also introduced and discussed. Comparisons between the particle filter and the extended Kalman filter are made using several numerical examples of nonlinear systems. The results indicate that the particle filter provides consistent state and parameter estimates for highly nonlinear systems, while the extended Kalman filter does not. The particle filter is applied to a real-data case study: a 7-story hotel whose structural system consists of non-ductile reinforced-concrete moment frames, one of which was severely damaged during the 1994 Northridge earthquake. Two identification models are proposed: a timevarying linear model and a simplified time-varying nonlinear degradation model. The latter is derived from a nonlinear finite-element model of the building previously developed at Caltech. For the former model, the resulting performance is poor since the parameters need to vary significantly with time in order to capture the structural degradation of the building during the earthquake. The latter model performs better because it is able to characterize this degradation to a certain extent even with its parameters fixed. Once again, the particle filter provides consistent state and parameter estimates, in contrast to the extended Kalman filter. It is concluded that for a state estimation procedure to be successful, at least two factors are essential: an appropriate estimation algorithm and a suitable identification model. Finally, recorded motions from the 1994 Northridge earthquake are used to illustrate how to do real-time performance evaluation by computing estimates of the repair costs and probability of component damage for the hotel

    Evaluation of an Afterschool Children’s Healthy Eating and Exercise Program

    Get PDF
    Background: The purpose of this study was to examine the feasibility of the Children’s Healthy Eating and Exercise Program (CHEE) in an afterschool program of an elementary school. Methods:Students in a low-income elementary school were recruited to participate in the program. Thirty-three children were in the intervention group. Twenty-four children in the comparison group were recruited from after school clubs in the same elementary school.The CHEE Program consisted of 18 sessions, featuring nutrition (20 min) and physical activity (40 min) lessons. Nutrition lessons were adapted from the Traffic Light Diet. Other lessons included MyPlate, my refrigerator, my lunchbox, and a healthy foods tasting activity. Multiple physical activities were utilized in the program including soccer, dance, relay races, tag, and other fun games. Data were collected at the beginning and end of the program. Results: Children in both groups reported eating more vegetables at the post-intervention measurement. Children in the intervention group indicated that they learned about healthy eating and new physical activities due to their participation in the program. Conclusions: Future studies are needed to discover barriers to behavior change as well as apply a more rigorous design to examine the impact of the CHEE Program

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains reports on twelve research projects.Joint Services Electronics Program (Contract DAALO3-86-K-0002)National Science Foundation (Grant ECS 85-04381)National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-270)National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-725)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0533)U.S. Army - Research Office Durham (Contract DAAG29-85-K-0079)International Business Machines, Inc.National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-269)Simulation TechnologiesSchlumberger-Doll Researc

    Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.

    Get PDF
    Eukaryotic gene transcription is accompanied by acetylation and methylation of nucleosomes near promoters, but the locations and roles of histone modifications elsewhere in the genome remain unclear. We determined the chromatin modification states in high resolution along 30 Mb of the human genome and found that active promoters are marked by trimethylation of Lys4 of histone H3 (H3K4), whereas enhancers are marked by monomethylation, but not trimethylation, of H3K4. We developed computational algorithms using these distinct chromatin signatures to identify new regulatory elements, predicting over 200 promoters and 400 enhancers within the 30-Mb region. This approach accurately predicted the location and function of independently identified regulatory elements with high sensitivity and specificity and uncovered a novel functional enhancer for the carnitine transporter SLC22A5 (OCTN2). Our results give insight into the connections between chromatin modifications and transcriptional regulatory activity and provide a new tool for the functional annotation of the human genome. Activation of eukaryotic gene transcription involves the coordination of a multitude of transcription factors and cofactors on regulatory DNA sequences such as promoters and enhancers and on the chromatin structure containing these elements 1-3 . Promoters are located at the 5¢ ends of genes immediately surrounding the transcriptional start site (TSS) and serve as the point of assembly of the transcriptional machinery and initiation of transcription 4 . Enhancers contribute to the activation of their target genes from positions upstream, downstream or within a target or neighboring gene Recent investigations using chromatin immunoprecipitation (ChIP) and microarray (ChIP-chip) experiments have described the chromatin architecture of transcriptional promoters in yeast, fly and mammalian systems 9 . In a manner largely conserved across species, active promoters are marked by acetylation of various residues of histones H3 and H4 and methylation of H3K4, particularly trimethylation of this residue. Nucleosome depletion is also a general characteristic of active promoters in yeast and flies, although this feature remains to be thoroughly examined in mammalian systems. Although some studies suggest that distal regulatory elements like enhancers may be marked by similar histone modification patterns 10-13 , the distinguishing chromatin features of promoters and enhancers have yet to be determined, hindering our understanding of a predictive histone code for different classes of regulatory elements. Here, we present high-resolution maps of multiple histone modifications and transcriptional regulators in 30 Mb of the human genome, demonstrating that active promoters and enhancers are associated with distinct chromatin signatures that can be used to predict these regulatory elements in the human genome. RESULTS Chromatin architecture and transcription factor localization We performed ChIP-chip analysis 14 to determine the chromatin architecture along 44 human loci selected by the ENCODE consortium as common targets for genomic analysis 15 , totaling 30 Mb

    Histone Modifications at Human Enhancers Reflect Global Cell-Type-Specific Gene Expression

    Get PDF
    The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene1, 2, 3, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome4, 5, 6. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression

    Use of Saliva for Early Dengue Diagnosis

    Get PDF
    The importance of laboratory diagnosis of dengue cannot be undermined. In recent years, many dengue diagnostic tools have become available for various stages of the disease, but the one limitation is that they require blood as a specimen for testing. In many incidences, phlebotomy in needle-phobic febrile individuals, especially children, can be challenging, and the tendency to forgo a dengue blood test is high. To circumvent this, we decided to work toward a saliva-based assay (antigen-capture anti-DENV IgA ELISA, ACA-ELISA) that has the necessary sensitivity and specificity to detect dengue early. Overall sensitivity of the ACA-ELISA, when tested on saliva collected from dengue-confirmed patients (EDEN study) at three time points, was 70% in the first 3 days after fever onset and 93% between 4 to 8 days after fever onset. In patients with secondary dengue infections, salivary IgA was detected on the first day of fever onset in all the dengue confirmed patients. This demonstrates the utility of saliva in the ACA-ELISA for early dengue diagnostics. This technique is easy to perform, cost effective, and is especially useful in dengue endemic countries

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
    corecore