176 research outputs found

    Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the sources of knee pain in osteoarthritis (OA) is believed to be related to local chronic inflammation of the knee joints, which involves the production of inflammatory cytokines such as tumor necrosis factor alpha (TNFα), interleukin (IL)-6, and nerve growth factor (NGF) in the synovial membrane, and these cytokines are believed to promote pathological OA. In the present study, correlations between proinflammatory cytokines in knee synovial fluid and radiographic changes and functional scores and pain scores among OA patients were examined.</p> <p>Methods</p> <p>Synovial fluid was harvested from the knees of 47 consecutive OA patients, and the levels of TNFα, IL-6, and NGF were measured using enzyme-linked immunosorbent assays. Osteoarthritic knees were classified using Kellgren-Lawrence (KL) grading (1-4). The Western Ontario and McMaster University Osteoarthritis Index (WOMAC) was used to assess self-reported physical function, pain, and stiffness.</p> <p>Results</p> <p>TNFα and IL-6 were detectable in knee synovial, whereas NGF was not. TNFα was not correlated with the KL grade, whereas IL-6 had a significantly negative correlation. We observed differences in the correlations between TNFα and IL-6 with WOMAC scores and their subscales (pain, stiffness, and physical function). TNFα exhibited a significant correlation with the total score and its 3 subscales, whereas IL-6 exhibited a moderately significant negative correlation only with the subscale of stiffness.</p> <p>Conclusions</p> <p>The present study demonstrated that the concentrations of proinflammatory cytokines are correlated with KL grades and WOMAC scores in patients with knee OA. Although TNFα did not have a significant correlation with the radiographic grading, it was significantly associated with the WOMAC score. IL-6 had a significant negative correlation with the KL grading, whereas it had only a weakly significant correlation with the subscore of stiffness. The results suggest that these cytokines play a role in the pathogenesis of synovitis in osteoarthritic knees in different ways: TNFα is correlated with pain, whereas IL-6 is correlated with joint function.</p

    Epigenetic Silencing of HOPX Promotes Cancer Progression in Colorectal Cancer

    Get PDF
    AbstractHomeodomain-only protein X (HOPX)-β promoter methylation was recently shown to be frequent in human cancers and was suggested as tumor suppressor gene in esophageal and gastric cancer. The aim of this study was to investigate the mechanistic roles of HOPX-β promoter methylation and its clinical relevance in colorectal cancer (CRC). HOPX-β promoter methylation was assessed in human CRC cell lines and 294 CRC tissues. HOPX mRNA and protein levels were measured in relation to HOPX-β promoter methylation. The effects of forced HOPX expression on tumorigenesis were studied using in vitro and in vivo assays. The association between HOPX-β promoter methylation and clinical relevance of CRC patients was determined. HOPX-β promoter methylation is cancer-specific and frequently found in CRC cell lines and tissues, resulting in the down-regulation of HOPX mRNA and protein levels. In CRC cell lines, forced expression of HOPX suppressed proliferation, invasion, and anchorage-independent growth. DNA microarray analyses suggested critical downstream genes that are associated with cancer cell proliferation, invasion or angiogenesis. In a mouse xenograft model, HOPX inhibited tumorigenesis and angiogenesis. Finally, HOPX-β promoter methylation was associated with worse prognosis of stage III CRC patients (hazard ratio= 1.40, P = .035) and also with poor differentiation (P = .014). In conclusion, HOPX-β promoter methylation is a frequent and cancer-specific event in CRC progression. This epigenetic alteration may have clinical ramifications in the diagnosis and treatment of CRC patients

    Therapeutic potential of PRL-3 targeting and clinical significance of PRL-3 genomic amplification in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphatase of regenerating liver-3 (PRL-3) has deserved attention as a crucial molecule in the multiple steps of metastasis. In the present study, we examined the mechanisms regulating PRL-3 expression, and assessed the clinical potential of PRL-3-targeted therapy in gastric cancer.</p> <p>Methods</p> <p>PRL-3 genomic amplification was analyzed using quantitative-polymerase chain reaction and/or fluorescence in situ hybridization in 77 primary gastric tumors. The anticancer activity of PRL-3 inhibitor (1-4-bromo-2-benzylidene rhodanine) treatment was evaluated against cancer cells with different genetic and expression status.</p> <p>Results</p> <p>PRL-3 genomic amplification was closely concordant with high level of its protein expression in cell lines, and was found in 20% (8/40) among human primary tumors with its expression, which were all stage III/IV disease (40%, 8/20), but in none (0/37) among those without expression. Additionally, PRL-3 genomic amplification was associated with metastatic lymph node status, leading to advanced stage and thereby poor outcomes in patients with lymph node metastasis (<it>P </it>= 0.021). PRL-3 small interfering RNA robustly repressed metastatic properties, including cell proliferation, invasion, and anchorage-independent colony formation. Although neither PRL-3 genomic amplification nor expression level was responsible for the sensitivity to PRL-3 inhibitor treatment, the inhibitor showed dose-dependent anticancer efficacy, and remarkably induced apoptosis on all the tested cell lines with PRL-3 expression.</p> <p>Conclusions</p> <p>We have for the first time, demonstrated that PRL-3 genomic amplification is one of the predominant mechanisms inducing its expression, especially in more advanced stage, and that PRL-3-targeted therapy may have a great potential against gastric cancer with its expression.</p

    Neurofilament Heavy Polypeptide Regulates the Akt-β-Catenin Pathway in Human Esophageal Squamous Cell Carcinoma

    Get PDF
    Aerobic glycolysis and mitochondrial dysfunction are common features of aggressive cancer growth. We observed promoter methylation and loss of expression in neurofilament heavy polypeptide (NEFH) in a significant proportion of primary esophageal squamous cell carcinoma (ESCC) samples that were of a high tumor grade and advanced stage. RNA interference-mediated knockdown of NEFH accelerated ESCC cell growth in culture and increased tumorigenicity in vivo, whereas forced expression of NEFH significantly inhibited cell growth and colony formation. Loss of NEFH caused up-regulation of pyruvate kinase-M2 type and down-regulation of pyruvate dehydrogenase, via activation of the Akt/β-catenin pathway, resulting in enhanced aerobic glycolysis and mitochondrial dysfunction. The acceleration of glycolysis and mitochondrial dysfunction in NEFH-knockdown cells was suppressed in the absence of β-catenin expression, and was decreased by the treatment of 2-Deoxyglucose, a glycolytic inhibitor, or API-2, an Akt inhibitor. Loss of NEFH activates the Akt/β-catenin pathway and increases glycolysis and mitochondrial dysfunction. Cancer cells with methylated NEFH can be targeted for destruction with specific inhibitors of deregulated downstream pathways

    Correlation Between Walking Ability and Monthly Care Costs in Elderly Patients After Surgical Treatments for Hip Fractures

    Get PDF
    Objective To validate the relationship between residual walking ability and monthly care cost as well as long-term care insurance (LTCI) certification level in elderly patients after surgical treatment for hip fractures in Japan. Methods Elderly patients aged >75 years who underwent surgical treatment for hip fractures in our hospital were included. The preand post-surgical (6-month) walking ability and LTCI certification and the presence or absence of dementia was determined from medical records and questionnaires. Walking ability was classified into 6 levels used in our daily medical practice. Based on these data, we correlated the relationship between walking ability and the LTCI certification level. Further, based on the official statistics pertaining to the average monthly costs per person at each LTCI certification level, we evaluated the relationship between walking ability and monthly care cost. Results A total of 105 cases (mean age, 80.2 years; 16 men; 39 patients with dementia) were included. The correlation between walking ability and average monthly cost per person as well as LTCI certification level at 6 months postoperatively (r=0.58) was demonstrated. The correlation was found in both groups with and without dementia. Conclusion The ability to walk reduced the cost of care in elderly patients who experienced hip fracture, regardless of the presence of dementia

    Promoter DNA Methylation of Oncostatin M receptor-β as a Novel Diagnostic and Therapeutic Marker in Colon Cancer

    Get PDF
    In addition to genetic changes, the occurrence of epigenetic alterations is associated with accumulation of both genetic and epigenetic events that promote the development and progression of human cancer. Previously, we reported a set of candidate genes that comprise part of the emerging “cancer methylome”. In the present study, we first tested 23 candidate genes for promoter methylation in a small number of primary colon tumor tissues and controls. Based on these results, we then examined the methylation frequency of Oncostatin M receptor-β (OSMR) in a larger number of tissue and stool DNA samples collected from colon cancer patients and controls. We found that OSMR was frequently methylated in primary colon cancer tissues (80%, 80/100), but not in normal tissues (4%, 4/100). Methylation of OSMR was also detected in stool DNA from colorectal cancer patients (38%, 26/69) (cut-off in TaqMan-MSP, 4). Detection of other methylated markers in stool DNA improved sensitivity with little effect on specificity. Promoter methylation mediated silencing of OSMR in cell lines, and CRC cells with low OSMR expression were resistant to growth inhibition by Oncostatin M. Our data provide a biologic rationale for silencing of OSMR in colon cancer progression and highlight a new therapeutic target in this disease. Moreover, detection and quantification of OSMR promoter methylation in fecal DNA is a highly specific diagnostic biomarker for CRC

    CAFs-Associated Genes (CAFGs) in Pancreatic Ductal Adenocarcinoma (PDAC) and Novel Therapeutic Strategy

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive cancer with striking fibrosis, and its mortality rate is ranked second across human cancers. Cancer-associated fibroblasts (CAFs) play a critical role in PDAC progression, and we reviewed the molecular understanding of PDAC CAFs and novel therapeutic potential at present. CAFs-associated genes (CAFGs) were tentatively classified into three categories by stroma specificity representing stroma/epithelia expression ratios (SE ratios). The recent classification using single cell transcriptome technology clarified that CAFs were composed of myofibroblasts (myCAFs), inflammatory CAFs (iCAFs), and other minor ones (e.g., POSTN-CAFs and antigen presenting CAFs, apCAFs). LRRC15 is a myCAFs marker, and myCAFs depletion by diphtheria toxin induces the rapid accumulation of cytotoxic T lymphocytes (CTLs) and therefore augment PDL1 antibody treatments. This finding proposes that myCAFs may be a critical regulator of tumor immunity in terms of PDAC progression. myCAFs are located in CAFs adjacent to tumor cells, while iCAFs marked by PDPN and/or COL14A1 are distant from tumor cells, where hypoxic and acidic environments being located in iCAFs putatively due to poor blood supply is consistent with HIF1A and GPR68 expressions. iCAFs may be shared with SASP (secretion-associated phenotypes) in senescent CAFs. myCAFs are classically characterized by CAFGs induced by TGFB1, while chemoresistant CAFs with SASP may dependent on IL6 expression and accompanied by STAT3 activation. Recently, it was found that the unique metabolism of CAFs can be targeted to prevent PDAC progression, where PDAC cells utilize glucose, whereas CAFs in turn utilize lactate, which may be epigenetically regulated, mediated by its target genes including CXCR4. In summary, CAFs have unique molecular characteristics, which have been rigorously clarified as novel therapeutic targets of PDAC progression

    Newly emerging standard chemotherapies for gastric cancer and clinical potential in elderly patients

    No full text
    With the increase in average life expectancy, the rate of occurrence of gastric cancer in elderly patients is also rising. While many clinical trials have been conducted to examine the effect of chemotherapy treatment on gastric cancer, age limits for eligible subjects have prevented the establishment of standards for chemotherapy in elderly patients with gastric cancer. As of March 2009, evidence-based standard chemotherapy regimens were established. In the Western world, debates centered on the ECF (Epirubicin/cisplatin/5-FU) or DCF (Docetaxel/cisplatin/5-FU) regimens based on the phase III randomized controlled trial at the Royal Marsden Hospital (RMH) or the V325 study, respectively. The JCOG9912 and SPIRITS trials emerged from Japan indicating attractive regimens that include S-1 for advanced gastric cancer patients. Using these active anticancer drugs, the trials that studied the efficacy of adjuvant therapies or surgical approaches, such as the Int-116/MAGIC/ACTS-GC trials, have actually succeeded in demonstrating the benefits of adjuvant therapies in gastric cancer patients. For cases of gastric cancer in elderly patients, treatment policies should consider these studies while analyzing not only the therapeutic effects but also drug toxicity, individual general health conditions, and social factors to select treatments that emphasize quality of life
    corecore