63 research outputs found

    IFN-α-Induced Upregulation of CCR5 Leads to Expanded HIV Tropism In Vivo

    Get PDF
    Chronic immune activation and inflammation (e.g., as manifest by production of type I interferons) are major determinants of disease progression in primate lentivirus infections. To investigate the impact of such activation on intrathymic T-cell production, we studied infection of the human thymus implants of SCID-hu Thy/Liv mice with X4 and R5 HIV. X4 HIV was observed to infect CD3−CD4+CD8−CXCR4+CCR5− intrathymic T-cell progenitors (ITTP) and to abrogate thymopoiesis. R5 HIV, by contrast, first established a nonpathogenic infection of thymic macrophages and then, after many weeks, began to replicate in ITTP. We demonstrate here that the tropism of R5 HIV is expanded and pathogenicity enhanced by upregulation of CCR5 on these key T-cell progenitors. Such CCR5 induction was mediated by interferon-α (IFN-α) in both thymic organ cultures and in SCID-hu mice, and antibody neutralization of IFN-α in R5 HIV-infected SCID-hu mice inhibited both CCR5 upregulation and infection of the T-cell progenitors. These observations suggest a mechanism by which IFN-α production may paradoxically expand the tropism of R5 HIV and, in so doing, accelerate disease progression

    αEβ7 Integrin Identifies Subsets of Pro-Inflammatory Colonic CD4+ T Lymphocytes in Ulcerative Colitis.

    Get PDF
    Background and Aims The αEβ7 integrin is crucial for retention of T lymphocytes at mucosal surfaces through its interaction with E-cadherin. Pathogenic or protective functions of these cells during human intestinal inflammation, such as ulcerative colitis [UC], have not previously been defined, with understanding largely derived from animal model data. Defining this phenotype in human samples is important for understanding UC pathogenesis and is of translational importance for therapeutic targeting of αEβ7-E-cadherin interactions. Methods αEβ7+ and αEβ7- colonic T cell localization, inflammatory cytokine production and expression of regulatory T cell-associated markers were evaluated in cohorts of control subjects and patients with active UC by immunohistochemistry, flow cytometry and real-time PCR of FACS-purified cell populations. Results CD4+αEβ7+ T lymphocytes from both healthy controls and UC patients had lower expression of regulatory T cell-associated genes, including FOXP3, IL-10, CTLA-4 and ICOS in comparison with CD4+αEβ7- T lymphocytes. In UC, CD4+αEβ7+ lymphocytes expressed higher levels of IFNγ and TNFα in comparison with CD4+αEβ7- lymphocytes. Additionally the CD4+αEβ7+ subset was enriched for Th17 cells and the recently described Th17/Th1 subset co-expressing both IL-17A and IFNγ, both of which were found at higher frequencies in UC compared to control. Conclusion αEβ7 integrin expression on human colonic CD4+ T cells was associated with increased production of pro-inflammatory Th1, Th17 and Th17/Th1 cytokines, with reduced expression of regulatory T cell-associated markers. These data suggest colonic CD4+αEβ7+ T cells are pro-inflammatory and may play a role in UC pathobiology

    Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals.

    Get PDF
    BackgroundThe SCID-hu Thy/Liv mouse model of HIV-1 infection is a useful platform for the preclinical evaluation of antiviral efficacy in vivo. We performed this study to validate the model with representatives of all four classes of licensed antiretrovirals.Methodology/principal findingsEndpoint analyses for quantification of Thy/Liv implant viral load included ELISA for cell-associated p24, branched DNA assay for HIV-1 RNA, and detection of infected thymocytes by intracellular staining for Gag-p24. Antiviral protection from HIV-1-mediated thymocyte depletion was assessed by multicolor flow cytometric analysis of thymocyte subpopulations based on surface expression of CD3, CD4, and CD8. These mice can be productively infected with molecular clones of HIV-1 (e.g., the X4 clone NL4-3) as well as with primary R5 and R5X4 isolates. To determine whether results in this model are concordant with those found in humans, we performed direct comparisons of two drugs in the same class, each of which has known potency and dosing levels in humans. Here we show that second-generation antiretrovirals were, as expected, more potent than their first-generation predecessors: emtricitabine was more potent than lamivudine, efavirenz was more potent than nevirapine, and atazanavir was more potent than indinavir. After interspecies pharmacodynamic scaling, the dose ranges found to inhibit viral replication in the SCID-hu Thy/Liv mouse were similar to those used in humans. Moreover, HIV-1 replication in these mice was genetically stable; treatment of the mice with lamivudine did not result in the M184V substitution in reverse transcriptase, and the multidrug-resistant NY index case HIV-1 retained its drug-resistance substitutions.ConclusionGiven the fidelity of such comparisons, we conclude that this highly reproducible mouse model is likely to predict clinical antiviral efficacy in humans

    Association Between Response to Etrolizumab and Expression of Integrin αE and Granzyme A in Colon Biopsies of Patients With Ulcerative Colitis

    Get PDF
    Background & AimsEtrolizumab is a humanized monoclonal antibody against the β7 integrin subunit that has shown efficacy vs placebo in patients with moderate to severely active ulcerative colitis (UC). Patients with colon tissues that expressed high levels of the integrin αE gene (ITGAE) appeared to have the best response. We compared differences in colonic expression of ITGAE and other genes between patients who achieved clinical remission with etrolizumab vs those who did.MethodsWe performed a retrospective analysis of data collected from 110 patients with UC who participated in a phase 2 placebo-controlled trial of etrolizumab, as well as from 21 patients with UC or without inflammatory bowel disease (controls) enrolled in an observational study at a separate site. Colon biopsies were collected from patients in both studies and analyzed by immunohistochemistry and gene expression profiling. Mononuclear cells were isolated and analyzed by flow cytometry. We identified biomarkers associated with response to etrolizumab. In the placebo-controlled trial, clinical remission was defined as total Mayo Clinic Score ≤2, with no individual subscore >1, and mucosal healing was defined as endoscopic score ≤1.ResultsColon tissues collected at baseline from patients who had a clinical response to etrolizumab expressed higher levels of T-cell−associated genes than patients who did not respond (P < .05). Colonic CD4+ integrin αE+ cells from patients with UC expressed higher levels of granzyme A messenger RNA (GZMA mRNA) than CD4+ αE− cells (P < .0001); granzyme A and integrin αE protein were detected in the same cells. Of patients receiving 100 mg etrolizumab, a higher proportion of those with high levels of GZMA mRNA (41%) or ITGAE mRNA (38%) than those with low levels of GZMA (6%) or ITGAE mRNA (13%) achieved clinical remission (P < .05) and mucosal healing (41% GZMAhigh vs 19% GZMAlow and 44% ITGAEhigh vs 19% ITGAElow). Compared with ITGAElow and GZMAlow patients, patients with ITGAEhigh and GZMAhigh had higher baseline numbers of epithelial crypt-associated integrin αE+ cells (P < .01 for both), but a smaller number of crypt-associated integrin αE+ cells after etrolizumab treatment (P < .05 for both). After 10 weeks of etrolizumab treatment, expression of genes associated with T-cell activation and genes encoding inflammatory cytokines decreased by 40%−80% from baseline (P < .05) in patients with colon tissues expressing high levels of GZMA at baseline.ConclusionsLevels of GZMA and ITGAE mRNAs in colon tissues can identify patients with UC who are most likely to benefit from etrolizumab; expression levels decrease with etrolizumab administration in biomarkerhigh patients. Larger, prospective studies of markers are needed to assess their clinical value

    Proteomic profiling of patient-derived glioblastoma xenografts identifies a subset with activated EGFR: implications for drug development

    Get PDF
    The development of drugs to inhibit glioblastoma (GBM) growth requires reliable preclinical models. To date, proteomic level validation of widely used patient-derived glioblastoma xenografts (PDGX) has not been performed. In the present study, we characterized 20 PDGX models according to subtype classification based on The Cancer Genome Atlas (TCGA) criteria, TP53, PTEN, IDH 1/2 and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. The 20 PDGXs belonged to three of four TCGA subtypes: 8 classical, 8 mesenchymal, and 4 proneural; none neural. Amplification of EGFR gene was observed in 9 out of 20 xenografts, and of these, 3 harbored the EGFRvIII mutation. We then performed proteomic profiling of PDGX, analyzing expression/activity of several proteins including EGFR. Levels of EGFR phosphorylated at Y1068 vary considerably between PDGX samples, and this pattern was also seen in primary GBM. Partitioning of 20 PDGX into high (n=5) and low (n=15) groups identified a panel of proteins associated with high EGFR activity. Thus, PDGX with high EGFR activity represent an excellent preclinical model to develop therapies for a subset of GBM patients whose tumors are characterized by high EGFR activity. Further, the proteins found to be associated with high EGFR activity can be monitored to assess the effectiveness of targeting EGFR

    CD28 Costimulation Regulates Genome-Wide Effects on Alternative Splicing

    Get PDF
    CD28 is the major costimulatory receptor required for activation of naïve T cells, yet CD28 costimulation affects the expression level of surprisingly few genes over those altered by TCR stimulation alone. Alternate splicing of genes adds diversity to the proteome and contributes to tissue-specific regulation of genes. Here we demonstrate that CD28 costimulation leads to major changes in alternative splicing during activation of naïve T cells, beyond the effects of TCR alone. CD28 costimulation affected many more genes through modulation of alternate splicing than by modulation of transcription. Different families of biological processes are over-represented among genes alternatively spliced in response to CD28 costimulation compared to those genes whose transcription is altered, suggesting that alternative splicing regulates distinct biological effects. Moreover, genes dependent upon hnRNPLL, a global regulator of splicing in activated T cells, were enriched in T cells activated through TCR plus CD28 as compared to TCR alone. We show that hnRNPLL expression is dependent on CD28 signaling, providing a mechanism by which CD28 can regulate splicing in T cells and insight into how hnRNPLL can influence signal-induced alternative splicing in T cells. The effects of CD28 on alternative splicing provide a newly appreciated means by which CD28 can regulate T cell responses
    • …
    corecore