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Abstract

The development of drugs to inhibit glioblastoma (GBM) growth requires reliable preclinical 

models. To date, proteomic level validation of widely used patient-derived glioblastoma 

xenografts (PDGX) has not been performed. In the present study, we characterized 20 PDGX 

models according to subtype classification based on The Cancer Genome Atlas (TCGA) criteria, 

TP53, PTEN, IDH 1/2 and TERT promoter genetic analysis, EGFR amplification status, and 

examined their proteomic profiles against those of their parent tumors. The 20 PDGXs belonged to 

three of four TCGA subtypes: 8 classical, 8 mesenchymal, and 4 proneural; none neural. 

Amplification of EGFR gene was observed in 9 out of 20 xenografts, and of these, 3 harbored the 

EGFRvIII mutation. We then performed proteomic profiling of PDGX, analyzing expression/

activity of several proteins including EGFR. Levels of EGFR phosphorylated at Y1068 vary 

considerably between PDGX samples, and this pattern was also seen in primary GBM. 

Partitioning of 20 PDGX into high (n=5) and low (n=15) groups identified a panel of proteins 

associated with high EGFR activity. Thus, PDGX with high EGFR activity represent an excellent 

preclinical model to develop therapies for a subset of GBM patients whose tumors are 

characterized by high EGFR activity. Further, the proteins found to be associated with high EGFR 

activity can be monitored to assess the effectiveness of targeting EGFR.
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Introduction

Glioblastoma (GBM), WHO grade IV astrocytoma, is an aggressive malignant brain tumor 

for which an effective treatment does not yet exist. GBM carries a grim prognosis, having a 

median survival of 15 months after diagnosis (Ostrom et al. 2013, Dunn et al. 2012, Lima et 

al. 2012, Louis et al. 2007). A major limiting factor in the efforts to develop effective 

therapies for GBMs is the lack of experimental models that faithfully recapitulate the 

molecular features of the primary tumors. As discussed by Carlson et al., patient-derived cell 

lines, including those used in GBM research, are known to gradually lose the genetic and 

morphologic characteristics of their parent tumors as a result of prolonged culturing and 

serial passaging, thus becoming unreliable experimental models overtime (Carlson et al. 

2011). With the advent of tumor xenografts generated via direct subcutaneous transfer of 

primary tumors into the flank of immunodeficient mice, known as patient-derived 

xenografts, it seems that we may be able to establish models that more reliably mimic the 

molecular features of the original tumor (Tentler et al. 2012, Williams et al. 2013, Siolas & 

Hannon 2013, Mattie et al. 2013, Higgins et al. 2013). Furthermore, the establishment of 

subcutaneous patient-derived xenografts allows for straightforward isolation of cells for in 

vitro studies and provides the researcher with a constant source of viable tissue in cases 

where the parent tumor tissue is scarce. In addition, in the case of central nervous system 

tumors, they can be used to generate intracranial xenografts for further in vivo studies that 

require careful attention to the effects of the blood-brain barrier on drug delivery (Carlson et 

al. 2011). In the case of GBM, patient-derived glioblastoma xenografts (PDGX) lines have 

been found to retain the key genetic features of the corresponding parent tumors (Carlson et 

al. 2011, Joo et al. 2013). However, PDGX have not been characterized for their proteomic 

profiling. This information is important because the cellular proteome and phosphoproteome 

of a tumor, both of which are critical drivers of cell proliferation, cell death and other 

important cellular processes, play a critical role in determining the response or failure of 

cancer therapy. The present study was undertaken to characterize PDGX at the proteomic 

level and to assess whether activity of key drivers of GBM growth, such as EGFR 

(Frederick et al. 2000), in PDGX is similar to that seen in the parent tumor. Toward this 

goal, we established a panel of 20 PDGXs, classified them into subtypes using the criteria 

established by The Cancer Genome Atlas (TCGA) network (Verhaak et al. 2010, Parsons et 

al. 2008), characterized them for key molecular abnormalities common in GBMs, namely 

EGFR gene amplification, and PTEN, TP53, IDH 1/2 and TERT promoter mutations, and 

obtained their proteomic profiles. We found that 5 out of 20 PDGX express elevated EGFR 

activity and this pattern is seen in corresponding parent GBM. We discuss the utility of the 

PDGX with elevated EGFR activity for drug development against a subset of GBMs that are 

characterized by elevated EGFR activity.
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Methods

Establishment of patient-derived GBM xenografts

To establish xenograft lines, fresh tumors were obtained, under an IRB-approved protocol, 

from GBM patients undergoing surgery at Duke University Medical Center. Under sterile 

conditions in a laminar flow containment hood, the tumor was minced, passed through a 

modified tissue press, sieved through two layers of mesh, and the homogenate passed 

through a 19-gauge needle. The coat of an athymic mouse (nu/nu genotype, BALB/c 

background) was disinfected with betadine, and the tumor homogenate (< 500 uL) was 

injected subcutaneously into the right flank (Friedman et al. 1988). Both male and female 

animals, which were obtained from the DLAR (Division of Laboratory Animal Resources) 

breeding facility at Duke University Medical Center, were used for this study. Tumor tissue 

is considered viable up to 48 hours after resection (Carlson et al. 2011). Therefore, all 

homogenate injections required to establish all xenografts described in this study were 

performed within this timeframe. After implantation, animals were monitored daily for 

tumor growth, and after attaining a size of approximately 500 mm3 (~1 cm in diameter), 

tumors were removed and analyzed. A diameter of 1 cm was chosen in accordance to 

commonly accepted practice in order to prevent any central necrosis, which could interfere 

with proteomic studies (Carlson et al. 2011).

Mutation analysis

DNA was extracted from xenografts using the Puregene extraction kit (Qiagen Inc.). 

Mutations in the TP53, PTEN, IDH 1/2, and TERT promoter genes were detected by Sanger 

sequencing using primers, as described by Parsons et al. (Parsons et al. 2008).

EGFR RNA amplification assay

Total RNA was extracted from xenografts using the Qiagen RNeasy kit (Qiagen, Inc., 

Valencia, CA) according to the manufacturer’s instructions, and RNA concentration was 

measured with the Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE). 

Synthesis of cDNA was accomplished using random hexamers (Invitrogen Superscript III 

kit). EGFR quantitative PCR (qPCR) was carried out, using a cDNA equivalent to 10 ng 

RNA input, with the TaqMan assay system (Applied Biosystems, Life Technologies) in an 

ABI 7900 real-time PCR system (Applied Biosystems, Life Technologies). Three different 

primer pairs and a corresponding FAM-MGB probe for each were designed to differentiate 

between PCR signals produced following amplification of EGFRvIII (exon 1 joined to exon 

8), non vIII-type EGFR (intact exons 2–7), and carboxyl end amplifications.

To detect EGFRvIII, primers 5’TCCTGGCGCTGCTGGCTG 3’ (exon 1) and 5’ 

CCTCCATCTCATAGCTGTCG 3’ (exon 8), and the corresponding probe FAM-5’ 

AGGAAAAGAAAGGTAATTATGTG 3’-MGB (exon 1–8 junction) were used. To detect 

non-vIII-type EGFR (which has intact exons 2–7), amplification primers, 5’ 

GCGGGACATAGTCAGCAGTG 3’ (exon 4) and 5’ TGGTCAGTTTCTGGCAGTTCTC 

3’ (exon 6), and the corresponding probe FAM-5’ CACCTGGGCAGCTGCCAAAAGT 3’-

MGB (exon 4–5 junction) were used. Amplification of carboxyl end was assayed using 

primers 5’ TGACTGAGGACAGCATAGACG 3’ (exon 27) and 5’ 
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AGAGGCTGATTGTGATAGACAGGAT 3’ (exon 28), and detected with probe FAM-5’ 

CAGTGCCTGAATACAT 3’-MGB (exon 27–28 junction).

Real-time PCR was done in triplicate using individual wells for each primer pair. 

Quantitative PCR results are expressed as relative quantity (RQ), fold difference in 

expression measured against a calibrator (normal brain RNA), and normalized for input 

cDNA quantity by measuring a reference gene. Human GAPDH (Applied Biosystems Pre-

developed TaqMan reagent kit) in triplicate was used to obtain the endogenous reference CT 

(threshold cycle number) value. Reverse transcribed cDNA from normal brain RNA 

(Clontech, MountainView, CA) was used as the calibrator sample. The PCR conditions were 

an initial incubation at 95°C for 10 min followed by 40 cycles of denaturation at 95°C for 15 

sec and combined annealing and amplification at 60°C for 1 min. The real-time PCR data 

was collected and analyzed with ABI SDS (v2.3, Applied Biosystems, Life Technologies). 

The RQ Manager (v1.2) feature of the software automatically calculates RQ using the 

formula RQ = 2−ÄÄCT. The ÄCT value is obtained by subtracting each sample’s average 

reference (GAPDH) CT value from average target (EGFR) CT value. The ÄÄCT is derived 

by subtracting ÄCT of the calibrator (normal brain) from the ÄCT of the sample. For normal 

brain, which has zero EGFRvIII, a CT value of 40, the highest cycle number, was used in 

EGFRvIII ÄCT calculations. This approach yielded undetectable amounts of EGFRvIII in 

PDGX expressing non-vIII variants. EGFR was considered amplified if we observed a RQ 

value > 3 during evaluation of the carboxyl terminus or exons 2–7 (non-vIII).

Classification of PDGX according to TCGA-defined subtypes

Total RNA was extracted using Qiagen’s RNeasy Mini Kit (Valencia, CA) according to the 

manufacturer’s directions. Total RNA was used to obtain global gene expression data using 

the GeneChip Human Genome U133A 2.0 array from Affymetrix (Santa Clara, CA). 

Microarray data was normalized and probes were summarized as gene expression levels 

using RMA (Irizarry et al. 2003). Data was log2 transformed, and genes were median 

centered. Xenografts were classified into one of the four subtypes (Verhaak et al. 2010) 

using Classification to the Nearest Centroid (ClaNC) (Dabney 2006) with the TCGA GBM 

data as the training dataset.

Reverse Phase Protein Array

Reverse Phase Protein Array (RPPA) is a high throughput, antibody-based screening tool 

that can quantify the levels of several hundred proteins and their post-translational 

modifications within a sample (Charboneau et al. 2002, Espina et al. 2009, Pin et al. 2014). 

All RPPA analyses in this study were performed at the Functional Proteomics RPPA Core 

Facility at MD Anderson, and all preliminary sample preparations were conducted according 

to the Core Facility’s ‘Preparation of tumor lysates from xenograft’s protocol, located on 

their website (http://www.mdanderson.org/education-and-research/resources-for-

professionals/scientific-resources/core-facilities-and-services/functional-proteomics-rppa-

core/index.html).

Tissue lysates from PDGX and primary GBM were examined separately in two analyses. 

Twenty PDGX samples were flash frozen in liquid nitrogen at the time of removal from 
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mice and were subsequently homogenized in RPPA lysis buffer [1% Triton X-100, 50mM 

HEPES, pH 7.4, 150mM NaCl, 1.5mM MgCl2, 1mM EGTA, 100mM NaF, 10mM Na 

pyrophosphate, 1mM Na3VO4, 10% glycerol, protease and phosphatase inhibitors] (Roche 

Applied Science, #05056489001 and #04906837001)]. Sample protein concentrations were 

adjusted to 1 mg/mL after being measured with the Bio-Rad protein assay (Bio-Rad, 

#500-0006). Afterwards, samples were treated with a 4X SDS buffer [40% Glycerol, 8% 

SDS, 0.25M Tris.HCl, pH 6.8, 10% beta-mercaptoethanol] and boiled for 5 minutes. These 

lysates were stored at −80°C until analyzed. Of the 20 PDGXs, primary tumor samples were 

available for only 15, and these were processed in the same manner as the xenografts and 

analyzed separately in the RPPA system.

All PDGX and primary tumor lysates were serially diluted and printed onto nitrocellulose-

coated slides, using an Aushon 2470 Arrayer (Aushon BioSystems, Billerica, MA, USA) 

and probed with a panel of 133 and 206 primary antibodies, respectively, followed by 

biotin-conjugated secondary antibodies. Signal intensities for each sample were amplified 

using the Autostainer Plus system (Dako, Carpinteria, CA, USA), analyzed and quantitated 

with the Microvigene software (VigeneTech, Carlisle, MA, USA). Each dilution curve was 

fitted with a logistic model (“Supercurve Fitting” developed by the Department of 

Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, Texas 

(“http://bioinformatics.mdanderson.org/OOMPA”). All samples were normalized for protein 

loading and the results transformed into linear values, and these values used as the 

quantitative expression of the individual proteins in the tumors or xenografts.

Because PDGX and primary GBMs were analyzed by RPPA at different times without 

internal controls, the normalized linear values of protein expression between the two data 

sets cannot be compared directly. Therefore, we compared the patterns, instead of absolute 

levels, of protein expression in PDGX and primary GBMs separately.

Western Blotting

10 µg of xenograft lysate was loaded per well into a 4–12% Novex Bis-Tris gel. The gel was 

transferred to a PVDF membrane, blocked with 5% milk and probed with a rabbit polyclonal 

EGFR antibody directed against the c-terminus (Cell signaling catalog #4267P) at 1 µg/mL 

in 5% BSA, followed by goat anti-rabbit and anti-biotin (Cell Signalling #7074 and 7075, 

respectively) secondary antibodies at 1 µg/mL. The membrane was developed on Biomax 

MR film. Following the development, the membrane was stripped with beta-

mercaptoethanol and the probing procedure was repeated using phospho-EGFR antibody 

specific for tyrosine phosphorylation at residue 1068 (Cell Signalling catalog # 2234) at 2 

µg/mL in 5% BSA and 2 µg/mL for goat anti-rabbit and anti-biotin antibodies, respectively. 

The blot was then developed as described above.

Statistical Analysis

To identify PDGX and primary tumor samples with activated EGFR (assessed by its 

phosphorylation at Y1068) we performed hierarchical cluster analysis based on the RPPA 

expression data. Among the 20 PDGX samples we identified an EGFR non-activated group 

of 15 with lower expression levels, and an EGFR activated group of 4 with higher 
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expression levels. One PDGX (08-0430) did not cluster with any other samples; upon 

further investigation we found it contained an EGFR mutation and excluded it from 

subsequent analysis. Among the 15 primary tumor samples we identified an EGFR non-

activated group of 10 that had lower expression levels, and an EGFR activated group of 4 

combining 2 small clusters that had elevated expression levels. We identified one primary 

tumor (10-0171) that did not cluster with any other samples, and treated it as an outlier due 

to its extremely high EGFR activity (5.5-fold higher activity than the sample with the second 

highest activity). Clustering was carried out using JMP software (SAS Institute, Cary, NC).

To assess whether EGFR activation is associated with changes in expression of other 

proteins, we performed Wilcoxon Rank Sum tests comparing the protein expression levels in 

the two identified EGFR activation groups (low and high EGFR activation) for the PDGX 

samples. The Benjamini-Hochberg procedure was used to control the false discovery rate 

(FDR). We identified proteins that had FDR values less than 0.05 as highly significant and 

proteins with FDR less than 0.30 as significant to an exploratory analysis in a small sample. 

Statistical testing was performed in R version 3.1.1.

Results

PDGX Characterization using the genomic approach

We established and characterized a panel of twenty PDGX. The mean age for the patients 

whose glioblastoma parent tumor was used to derive the xenografts was 62.25 ± 9.67 years. 

As Table 1 shows, our PDGX fall into three of the four TCGA subtypes: classical (8 

samples), mesenchymal (8 samples), and proneural (4 samples). Table 1 also lists their 

demographic data, TP53, PTEN, TERT promoter and EGFR genes status. The genetic 

abnormalities seen in our PDGX are as follows: 1) Mutations in TP53 and PTEN were 

observed in 5 and 14 PDGX, respectively 2) None of our PDGX had mutations in either 

IDH 1 or IDH 2; 3) Mutations in the TERT promoter were seen in all 20 PDGX, 7 having a 

C250T substitution, and the rest having a C228T substitution 4) EGFR amplification 

observed in 9 PDGX; and 5) EGFRvIII, the constitutively active deletion mutant of EGFR 

(Banaszczyk et al. 2013, Gan et al. 2013), observed in 3 PDGX.

PDGX Characterization using the proteomic approach

We used RPPA to examine 133 unique proteins/phosphoproteins, including EGFR in its 

unphosphorylated and phosphorylated forms, in our panel of 20 PDGXs. We found that 

PDGXs differ considerably from each other in the expression of total EGFR and 

autophosphorylated EGFR at tyrosine 1068 (p-EGFR Y1068) and 1173 (p-EGFR Y1173) 

(Table 2). Plotting of EGFR pY1068 expression levels (Figure 1), which is a measure of 

EGFR activity (Wheeler et al. 2012), demonstrates that phosphor-EGFR values are near 1 or 

higher in only seven PDGX (marked with “**”). We labeled these PDGX as PDGX with 

activated EGFR. Out of seven PDGX with higher EGFR activity, five are of the classical 

subtype (Table 2). This is not surprising given that abnormalities in the EGFR gene are the 

hallmark of the classical subtype (Verhaak et al. 2010). What is surprising, however, is that 

higher EGFR activity can also be seen in mesenchymal and proneural subtypes (Table 2).
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Western blotting of selected PDGX matches EGFR phosphorylation data obtained using 
reverse phase protein array

For validation of the results obtained using RPPA, we examined the expression of EGFR 

and EGFR-pY1068 in a subset of our PDGX samples by western blotting. The results, 

shown in Figure 2, indicate PDGX #1 (08-0308) and #5 (09-0211) to have lower levels of 

EGFR and p-EGFR Y-1068, and these data are consistent with the RPPA data (Table 2 and 

Figure 1). PDGX #4 (09-0155) and #8 (10-0171), which harbor EGFRvIII (Table 1), both 

show high levels of expression of EGFR Y1068, which again is in accord with the RPPA 

data (Table 2). As expected, the EGFR band in these EGFRvIII expressing PDGX is lower 

than that seen in PDGX with the wild-type EGFR (Figure 2). The wild-type EGFR 

expressing PDGXs #7 (09-0584) and #20 (10-0021) also display a phosphorylated band 

corresponding to the molecular weight of EGFRvIII (Figure 2, panel B), but this is probably 

a proteolytic product of EGFR as EGFRvIII was not detected in these xenografts. Finally, 

the EGFR in PDGX #08-0430 has a very high phosphorylation at Y1068, which is again 

consistent with the RPPA data (Table 2), but its size is much lower. This truncation of 

EGFR is consistent with the observation that in this xenograft, high EGFR amplification was 

seen only with PCR primers directed against the last exon (Table 1).

EGFR activity in PDGX and primary GBM have a similar pattern

We next compared whether the pattern of EGFR activity seen in PDGX is similar to that 

seen in corresponding primary GBM. We compared the EGFR activation group assignments 

of the 15 pairs of PDGX/primary tumor as described under the statistical analysis section. 

Figure 3 shows the EGFR activity patterns in PDGX and primary GBM. We found that of 

the 10 PDGXs with low EGFR activity all but 1 primary tumor also have low EGFR 

activity, indicating that EGFR activity in PDGX accurately reflects EGFR activity in 

primary GBM. The agreement between PDGX and primary GBM expressing high EGFR 

activity shows a lower concordance and this may be due to the small sample size of PDGX 

with high EGFR activity.

High activity of EGFR is correlated with high activity of several other proteins

To identify whether PDGXs with EGFR activation, as identified by hierarchical clustering, 

have significant changes in the expression of other proteins, we compared the expression 

levels of the 133 unique proteins obtained through RPPA between the two EGFR activation 

groups, using Wilcoxon Rank Sum tests. The results, Figure 4, revealed that at FDR < 0.05, 

PDGXs with high EGFR phosphorylation display significantly higher expression of the 

following 6 proteins: EGFR, pEGFR-Y1068, pEGFR-Y1163, pHER2-Y1248, PDCD4, and 

pSrc-Y416. When the analysis was extended to FDR < 0.3, association with an additional 11 

proteins (4E-BP1, 53BP1, Beclin, ER-alpha, pGSK3-pS9, IRS1, pMAPK-T202/Y204, 

MYH11, PEA15, pRb-S807/S811, and RBM15) was detected. If confirmed in future 

studies, this would suggest that the status of these proteins could be used as a marker of the 

efficacy of EGFR kinase inhibitors employed to silence EGFR signaling as a brain tumor 

therapeutic.
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Discussion

Our characterization of a panel of 20 PDGX according to TCGA criteria represents the first 

such study performed by a laboratory outside of the TCGA group. Although TCGA-defined 

four subgroups of primary GBMs consisting of classical, mesenchymal, proneural, and 

neural, we detected only three subtypes in our 20 PDGX. Apparently, neural subtype is 

difficult to detect in PDGX as this subtype was also not detected by Verhaak et al. (Verhaak 

et al. 2010), a TCGA-associated group, in their characterization of PDGX. In this 

connection, it is interesting to point out that Huse et al. (Huse et al. 2013), in their recent 

review of GBM subtypes, state that most studies have been able to classify GBM into three 

major subtypes: classical, mesenchymal, and proneural.

The genetic abnormalities seen in key genes in our 20 PDGX are qualitatively similar to 

those reported by Carlson et al. for their collection of 20 PDGX lines (Carlson et al. 2011), 

in which they found 10 of 20 with EGFR amplification, 3 of which were expressing 

EGFRvIII, 7 of 20 with mutations in TP53, and 8 of 20 with mutations or deletions in PTEN 

(Carlson et al. 2011). Similarly, our findings regarding the TERT promoter mutations were 

on par with those of Killela et al. who found mutations in a remarkably high number of 

tumors (83% of 78 tumors) (Killela et al. 2013). Additionally, they reported that TERT 

promoter mutations were associated with EGFR amplification but since 100% of our PDGX 

are positive for TERT promoter mutations, we were unable to test this association.

In this study, we focused on EGFR and made some interesting observations. First, high 

EGFR activity is not only seen in classical subtypes, but also in other subtypes. Second, 

while 6 out of 7 PDGX with higher EGFR activity have EGFR gene amplification, higher 

EGFR activity is also seen in the absence of gene amplification as shown by the data with 

PDGX #20 (Tables 1, 2 and Figure 1). Conversely, PDGX with EGFR gene amplification 

may not have elevated EGFR activity as indicated by data on PDGX #10 (08-0679) and 15 

(09-0627; Tables 1, 2 and Figure 1). Third, we have identified three types of EGFR in our 

xenografts; 1) wild-type, 2) EGFRvIII and 3) a highly active truncated EGFR that remains to 

be characterized. Whether or not this truncated mutant of EGFR has already been described 

in GBM is not clear (Frederick et al. 2000), but it may resemble the EGFRvI mutant 

described by Nicholas et al in their review (Nicholas et al. 2006). Further studies are needed 

to fully characterize this truncated EGFR mutant present in our PDGX #08-0430 (Tables 1 

and 2). Interestingly, a recent report documented that the diversity of EGFR seen in bulk 

GBM is also seen at the single cell level (Francis et al. 2014, Gini & Mischel 2014).

Since EGFR is dysregulated in a large number of GBM and has been a target for drug 

development, we wanted to determine whether EGFR activity seen in PDGX is also seen in 

primary GBMs. To this end, we also obtained proteomic profiles of 15 primary GBMs that 

were available corresponding to our PDGX. To our knowledge, this is the first time that 

such a comparison has been made (Siolas & Hannon 2013). A high concordance of EGFR 

activity between PDGX and their parent tumors implies that PDGX could be used for 

personalized therapy and/or targeted drug development. We also examined whether other 

proteins important in GBM biology, such as Akt, exhibit similar patterns of expression/

activity in PDGX and primary GBMs. However, in this case, we found that there was a poor 
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correlation between PDGX and primary GBMs. While there could be several reasons for 

this discrepancy, the main one appears to be that primary GBM used for PDGX generation 

were fresh whereas primary GBMs used for RPPA analysis have been in storage for 

different lengths of time and may have also experienced different freeze-thaw cycles. Future 

studies should store a part of the primary GBM used for xenograft generation and obtain its 

proteomic profile at the same time as PDGX. Given that proteomic analysis, despite 

limitations in the currently available software-based analytic tools, has become an important 

tool guiding the development of anticancer therapy (Dawson & Carragher 2014), future 

studies should also compare whether stem cells isolated from primary GBMs retain the 

proteomic profile of primary GBMs.

The findings of the present study underscore the importance of using proteomic data as a 

tool for segregating GBM patients for drug development and clinical trials. Heterogeneity 

among GBMs is well known and contributes to failure in clinical trials performed without 

segregating GBM patients. To address this problem, the TCGA network identified four 

distinct subtypes based on gene expression data and attempts are being made to group GBM 

patients according to the TCGA-defined subtype of their tumor (Verhaak et al. 2010, Olar & 

Aldape 2014, Cloughesy et al. 2014). However, it is our belief that this approach will be 

limited as a strategy for testing targeted therapies, because, as shown through the EGFR 

example, the same target may be active in more than one subtype. We suggest that a better 

approach is to segregate GBM patients based on the presence of the protein modulator that is 

being targeted.

The use of PDGX models is an improvement over previous models that generated 

xenografts using cell lines with limited relevance to the primary GBMs (Kola & Landis 

2004). However, one drawback of our study is that our PDGX models were not generated by 

intracranial transplantation. The development of patient-specific orthotopic models of GBM 

are clearly superior (Joo et al. 2013), and future studies should compare proteomic profiling 

of orthotopic PDGX and primary GBMs.

In summary, we have characterized a panel of 20 PDGX and shown that the proteomic, and 

not the genomic, profile provides an accurate picture of EGFR activation and that PDGXs 

can be a helpful tool for designing targeted therapies in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GBM glioblastoma

PDGX patient-derived glioblastoma xenografts

TCGA The Cancer Genome Atlas

TP53 tumor protein p53

PTEN phosphatase and tensin homolog

IDH 1/2 isocitrate dehydrogenase 1/2

TERT telomerase reverse transcriptase

EGFR epidermal growth factor receptor

WHO World Health Organization

IRB Institutional Review Board

DLAR Division of Laboratory Animal Resources

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

CT threshold cycle number

RPPA Reverse Phase Protein Array

FDR false discovery rate
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Figure 1. 
Expression of EGFR phosphorylated at tyrosine 1068 (pEGFRY1068) in PDGX. The 

expression levels of p-EGFRY1068 were obtained by RPPA analysis of 20 PDGX. PDGX 

#9, corresponding to sample ID 08-0430, has the highest EGFR activity (auto-

phosphorylation). This PDGX expresses a mutant EGFR with N-terminus deletion as 

indicated in the legend of Figure 2.
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Figure 2. 
EGFR and EGFR Y1068 expression in selected PDGX by western blotting. Of the PDGX 

examined, 6 are Classical (#1, 2, 4, 5, 7, and 8); 1 is Mesenchymal (#9); and 1 is Proneural 

(#20). (A) Total EGFR: the anti-EGFR antibody used was against the intracellular domain 

of EGFR. (B) p-EGFRY1068: the anti-pEGFR antibody used was selective for EGFR 

phosphorylated at tyrosine 1068 near the c-terminus. PDGX #9 expresses a lower molecular 

weight mutant EGFR with high auto-phosphorylation. This mutant EGFR is probably 

deleted at the N-terminus because its presence and amplification was detected only with 

primers directed against the carboxyl terminal part of the receptor. Exposure times were 2 

and 5 minutes for panel A and panel B, respectively. *PDGX expressing EGFRvIII.
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Figure 3. 
EGFR activity in 15 PDGX and primary GBM pairs exhibits similar patterns. Primary 

GBMs of nine of the 10 PDGX with lower EGFR activity also have lower EGFR activity.
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Figure 4. 
Proteins whose expression was found to be significantly different (FDR < 0.3) in PDGX 

with activated EGFR (n=4) when compared to those having low activation of EGFR (n=15). 

The expression levels of these proteins were obtained by the RPPA analysis.

In this issue, we have characterized a panel of patient derived glioblastoma xenografts 

(PDGXs) at genetic and proteomic level. Since proteomic profiling provides information on 
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activated growth pathways, PDGXs could be used to identify an arsenal of signal 

transduction modulators that can be targeted to effectively arrest glioblastoma growth.
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