5 research outputs found

    Doping-dependent charge order correlations in electron-doped cuprates

    Get PDF
    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2−xCexCuO4 and Nd2−xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2−xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates

    Mitochondrial oxidative stress and nitrate tolerance – comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD(+/- )mice

    Get PDF
    BACKGROUND: Chronic therapy with nitroglycerin (GTN) results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS). According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) play an important role for the development of nitrate and cross-tolerance. METHODS: Tolerance was induced by infusion of wild type (WT) and heterozygous manganese superoxide dismutase mice (Mn-SOD(+/-)) with ethanolic solution of GTN (12.5 μg/min/kg for 4 d). For comparison, the tolerance-free pentaerithrityl tetranitrate (PETN, 17.5 μg/min/kg for 4 d) was infused in DMSO. Vascular reactivity was measured by isometric tension studies of isolated aortic rings. ROS formation and aldehyde dehydrogenase (ALDH-2) activity was measured in isolated heart mitochondria. RESULTS: Chronic GTN infusion lead to impaired vascular responses to GTN and acetylcholine (ACh), increased the ROS formation in mitochondria and decreased ALDH-2 activity in Mn-SOD(+/- )mice. In contrast, PETN infusion did not increase mitochondrial ROS formation, did not decrease ALDH-2 activity and accordingly did not lead to tolerance and cross-tolerance in Mn-SOD(+/- )mice. PETN but not GTN increased heme oxygenase-1 mRNA in EA.hy 926 cells and bilirubin efficiently scavenged GTN-derived ROS. CONCLUSION: Chronic GTN infusion stimulates mitochondrial ROS production which is an important mechanism leading to tolerance and cross-tolerance. The tetranitrate PETN is devoid of mitochondrial oxidative stress induction and according to the present animal study as well as numerous previous clinical studies can be used without limitations due to tolerance and cross-tolerance

    Early probiotic supplementation and the risk of celiac disease in children at genetic risk

    No full text
    Abstract Probiotics are linked to positive regulatory effects on the immune system. The aim of the study was to examine the association between the exposure of probiotics via dietary supplements or via infant formula by the age of 1 year and the development of celiac disease autoimmunity (CDA) and celiac disease among a cohort of 6520 genetically susceptible children. Use of probiotics during the first year of life was reported by 1460 children. Time-to-event analysis was used to examine the associations. Overall exposure of probiotics during the first year of life was not associated with either CDA (n = 1212) (HR 1.15; 95%CI 0.99, 1.35; p = 0.07) or celiac disease (n = 455) (HR 1.11; 95%CI 0.86, 1.43; p = 0.43) when adjusting for known risk factors. Intake of probiotic dietary supplements, however, was associated with a slightly increased risk of CDA (HR 1.18; 95%CI 1.00, 1.40; p = 0.043) compared to children who did not get probiotics. It was concluded that the overall exposure of probiotics during the first year of life was not associated with CDA or celiac disease in children at genetic risk

    Early Probiotic Supplementation and the Risk of Celiac Disease in Children at Genetic Risk

    No full text

    Association of Gluten Intake During the First 5 Years of Life With Incidence of Celiac Disease Autoimmunity and Celiac Disease Among Children at Increased Risk

    No full text
    corecore