32 research outputs found

    Structural equation modeling of food craving across the menstrual cycle T using behavioral, neuroendocrine, and metabolic factors

    Get PDF
    Objective: To identify associations between circulating endocannabinoids and craving during the luteal phase of the menstrual cycle. This report is a secondary analysis of a trial registered in clinicaltrials.gov as NCT01407692. Methods: Seventeen premenopausal women were studied during the follicular and luteal phases of their menstrual cycle. Previously we had reported fasting plasma estradiol, progesterone, leptin associations with luteal phase cravings for carbohydrate, fat, sweet-rich foods, and eating behavior. Here, we measured fasting plasma endocannabinoids (ECs) endocannabinoid-like substances (ECLs), and postprandial metabolic responses to a mixed meal challenge. Structural equation modeling was used to evaluate relationships between measured variables and cravings. Results: Oleoylethanolamide (OEA) and postprandial lipids were inversely associated with craving sweet-rich foods, while progesterone was positively associated (RMSEA = 0.041, χ2 p: 0.416 i.e. hypothetical and physiological models not different). OEA, progesterone and disinhibition were positively associated with craving carbohydrates (RMSEA: \u3c 0.001, χ2 p: 0.919). ECs and ECLs combined were stronger predictors of craving than clinical metabolic parameters, ECs only, satiety hormones or gonadocorticoids. Conclusions: Our theoretical model suggests that ECs and ECLs influence craving. Since these metabolites can be modulated via dietary fat intake, they could be potential targets to alter menstrual cycle cravings

    Peripheral blood mononuclear cells of breast cancer patients can be reprogrammed to enhance anti-HER-2/neu reactivity and overcome myeloid-derived suppressor cells [poster abstract]

    Get PDF
    Barriers limiting the efficacy of adoptive cellular therapy (ACT) for breast cancer patients include immune suppression mediated by myeloid-derived suppressor cells (MDSC) and a low frequency of tumor-reactive memory T cells (Tm). Recently, we developed an ex vivo protocol to reprogram tumor-reactive murine splenocytes; these cells were found to be resistant to MDSC suppression and protected FVBN202 mice from tumor challenge. Here, we evaluated the clinical applicability of reprogramming tumor-sensitized PBMCs isolated from patients with early stage breast cancer by treatment with bryostatin 1 and ionomycin (B/I) combined with IL-2, IL-7 and IL-15. Our data demonstrate that reprogrammed cells are enriched with Tm cells (n=5; p=0.006), as well as activated CD56+(n=6; p=0.003) and CD161+ (n=4; p=0.02) NKT cells, and demonstrate expansion in total cell numbers (n=16; p=0.003) compared to baseline cells. Reprogrammed PBMCs displayed enhanced HER-2/neu-specific IFN-γ producing immune responses (n=6; p=0.04); non-reprogrammed control PBMC IFN-γ production was not significant (n=6; p=0.4). Furthermore, high-throughput sequencing analysis of the T cell receptor (TcR) Vβ in one patient demonstrated clonal expansion of specific TcR VJ recombination events resulting from cellular reprogramming, suggestive of an enriched frequency of specific tumor antigen-primed T cell clones. Interestingly, reprogrammed T cells were resistant to autologous CD33+ CD11b+ HLA-DRlo/- MDSCs, as determined by further enhanced HER-2/neu-specific IFN-γ secretion in the presence of MDSCs (n=6; p=0.03). Activated CD161+ NKT cells comprising 3% or greater of total reprogrammed cells rendered T cells resistant to MDSCs (n=3; p=0.02). Upregulation of NKG2D expression on CD161+(n=5; p=0.0006) and CD56+ (n=5; p=0.04) NKT cells resulted from cellular reprogramming. Therefore, NKG2D signaling was blocked using anti-NKG2D blocking antibody in our co-culture system, resulting in the abrogation of resistance to MDSCs as determined by blunted IFN-γ secretion (n=3; p=0.04). Finally, the phenotype of MDSCs after co-culture with reprogrammed PBMC was examined; we observed downregulation of CD11b expression (n=3; p=0.02) concomitant with HLA-DR upregulation on MDSCs (n=3; p=0.001); suggestive of induced maturation of MDSCs into Dendritic Cells (DC). The results of our study offer the following strategies to improve ACT of breast cancer: i) inclusion of activated NKT cells in ACT to overcome MDSC suppression by inducing MDSC maturation into DCs, and ii) PBMC reprogramming to enrich the frequency of tumor-reactive Tm cells

    Within-Host Evolution of Burkholderia pseudomallei in Four Cases of Acute Melioidosis

    Get PDF
    Little is currently known about bacterial pathogen evolution and adaptation within the host during acute infection. Previous studies of Burkholderia pseudomallei, the etiologic agent of melioidosis, have shown that this opportunistic pathogen mutates rapidly both in vitro and in vivo at tandemly repeated loci, making this organism a relevant model for studying short-term evolution. In the current study, B. pseudomallei isolates cultured from multiple body sites from four Thai patients with disseminated melioidosis were subjected to fine-scale genotyping using multilocus variable-number tandem repeat analysis (MLVA). In order to understand and model the in vivo variable-number tandem repeat (VNTR) mutational process, we characterized the patterns and rates of mutations in vitro through parallel serial passage experiments of B. pseudomallei. Despite the short period of infection, substantial divergence from the putative founder genotype was observed in all four melioidosis cases. This study presents a paradigm for examining bacterial evolution over the short timescale of an acute infection. Further studies are required to determine whether the mutational process leads to phenotypic alterations that impact upon bacterial fitness in vivo. Our findings have important implications for future sampling strategies, since colonies in a single clinical sample may be genetically heterogeneous, and organisms in a culture taken late in the infective process may have undergone considerable genetic change compared with the founder inoculum

    Structural equation modeling of food craving across the menstrual cycle T using behavioral, neuroendocrine, and metabolic factors

    Get PDF
    Objective: To identify associations between circulating endocannabinoids and craving during the luteal phase of the menstrual cycle. This report is a secondary analysis of a trial registered in clinicaltrials.gov as NCT01407692. Methods: Seventeen premenopausal women were studied during the follicular and luteal phases of their menstrual cycle. Previously we had reported fasting plasma estradiol, progesterone, leptin associations with luteal phase cravings for carbohydrate, fat, sweet-rich foods, and eating behavior. Here, we measured fasting plasma endocannabinoids (ECs) endocannabinoid-like substances (ECLs), and postprandial metabolic responses to a mixed meal challenge. Structural equation modeling was used to evaluate relationships between measured variables and cravings. Results: Oleoylethanolamide (OEA) and postprandial lipids were inversely associated with craving sweet-rich foods, while progesterone was positively associated (RMSEA = 0.041, χ2 p: 0.416 i.e. hypothetical and physiological models not different). OEA, progesterone and disinhibition were positively associated with craving carbohydrates (RMSEA: \u3c 0.001, χ2 p: 0.919). ECs and ECLs combined were stronger predictors of craving than clinical metabolic parameters, ECs only, satiety hormones or gonadocorticoids. Conclusions: Our theoretical model suggests that ECs and ECLs influence craving. Since these metabolites can be modulated via dietary fat intake, they could be potential targets to alter menstrual cycle cravings

    Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells.

    No full text
    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy

    A randomized controlled trial to evaluate the Make Safe Happen® app—a mobile technology-based safety behavior change intervention for increasing parents’ safety knowledge and actions

    No full text
    Abstract Background Many unintentional injuries that occur in and around the home can be prevented through the use of safety equipment and by consistently following existing safety recommendations. Unfortunately, uptake of these safety behaviors is unacceptably low. This paper describes the design of the Make Safe Happen® smartphone application evaluation study, which aims to evaluate a mobile technology-based safety behavior change intervention on parents’ safety knowledge and actions. Methods Make Safe Happen® app evaluation study is a randomized controlled trial. Participants will be parents of children aged 0–12 years who are recruited from national consumer online survey panels. Parents will complete a pretest survey, and will be randomized to receive the Make Safe Happen® app or a non-injury-related app, and then complete a posttest follow-up survey after 1 week. Primary outcomes are: (1) safety knowledge; (2) safety behaviors; (3) safety device acquisition and use, and (4) behavioral intention to take safety actions. Results Anticipated study results are presented. Conclusions Wide-reaching interventions, to reach substantial parent and caregiver audiences, to effectively reduce childhood injuries are needed. This study will contribute to the evidence-base about how to increase safety knowledge and actions to prevent home-related injuries in children. Trial registration number NCT02751203; Pre-results

    Family and fertility: kin influence on the progression to a second birth in the British Household Panel Study.

    Get PDF
    Particular features of human female life history, such as short birth intervals and the early cessation of female reproduction (menopause), are argued to be evidence that humans are 'cooperative breeders', with a reproductive strategy adapted to conditions where mothers receive substantial assistance in childraising. Evolutionary anthropologists have so far largely focussed on measuring the influence of kin on reproduction in natural fertility populations. Here we look at the effect in a present-day low-fertility population, by analysing whether kin affect parity progression in the British Household Panel Study. Two explanatory variables related to kin influence significantly increase the odds of a female having a second birth: i) having relatives who provide childcare and ii) having a larger number of frequently contacted and emotionally close relatives. Both effects were measured subject to numerous socio-economic controls and appear to be independent of one another. We therefore conclude that kin may influence the progression to a second birth. This influence is possibly due to two proximate mechanisms: kin priming through communication and kin assistance with childcare

    Burkholderia pseudomallei, the causative agent of melioidosis, is rare but ecologically established and widely dispersed in the environment in Puerto Rico.

    No full text
    BackgroundBurkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. The global burden and distribution of melioidosis is poorly understood, including in the Caribbean. B. pseudomallei was previously isolated from humans and soil in eastern Puerto Rico but the abundance and distribution of B. pseudomallei in Puerto Rico as a whole has not been thoroughly investigated.Methodology/principal findingsWe collected 600 environmental samples (500 soil and 100 water) from 60 sites around Puerto Rico. We identified B. pseudomallei by isolating it via culturing and/or using PCR to detect its DNA within complex DNA extracts. Only three adjacent soil samples from one site were positive for B. pseudomallei with PCR; we obtained 55 isolates from two of these samples. The 55 B. pseudomallei isolates exhibited fine-scale variation in the core genome and contained four novel genomic islands. Phylogenetic analyses grouped Puerto Rico B. pseudomallei isolates into a monophyletic clade containing other Caribbean isolates, which was nested inside a larger clade containing all isolates from Central/South America. Other Burkholderia species were commonly observed in Puerto Rico; we cultured 129 isolates from multiple soil and water samples collected at numerous sites around Puerto Rico, including representatives of B. anthina, B. cenocepacia, B. cepacia, B. contaminans, B. glumae, B. seminalis, B. stagnalis, B. ubonensis, and several unidentified novel Burkholderia spp.Conclusions/significanceB. pseudomallei was only detected in three soil samples collected at one site in north central Puerto Rico with only two of those samples yielding isolates. All previous human and environmental B. pseudomallei isolates were obtained from eastern Puerto Rico. These findings suggest B. pseudomallei is ecologically established and widely dispersed in the environment in Puerto Rico but rare. Phylogeographic patterns suggest the source of B. pseudomallei populations in Puerto Rico and elsewhere in the Caribbean may have been Central or South America
    corecore