19 research outputs found

    Digitalization and automatization of agricultural irrigation in Germany

    Get PDF
    Die Dürresommer der vergangenen Jahre (insbesondere 2018 und 2019) haben die Landwirte vor massive Wasserprobleme gestellt. Landwirtschaftliche Bewässerung nimmt in vielen Regionen in Deutschland stark an Relevanz zu. Hierbei kommt es zu Nutzungskonflikten zwischen Bewässerung und der Trinkwasserversorgung. Das Thema der wassersparenden Bewirtschaftung von landwirtschaftlichen Flächen wird aus der Sicht der Wirtschafts- und Nachhaltigkeitsdiskurse in Zukunft weiter an Bedeutung gewinnen. Die Bewässerung befindet sich in einer digitalen als auch technischen Transformation. Im Folgenden wird ein Überblick über die aktuellen Entwicklungen der Digitalisierung und Automatisierung von Bewässerungssystemen gegeben und daran anknüpfend wird auf aktuelle Forschungstätigkeiten eingegangen.Germany experienced historic droughts in the summers of 2018 and 2019. These events clearly indicate that irrigation will continue to become more relevant for the stability of the agricultural sector of multiple regions in Germany. Simultaneously, increased demand for irrigation water for agriculture correlates with increased intra-sectoral allocation conflict – especially with drinking-water suppliers and consumers. Water-use efficiency in the agricultural sector will become even more important given the economic and sustainability discourses that define our future. Irrigation is undergoing both a digital and a technical transformation. The following discussion provides an overview of the current developments in digitization and automation of irrigation systems for agriculture

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    The Difficult Path from Perception to Precautionary Action—Participatory Modeling as a Practical Tool to Overcome the Risk Perception Paradox in Flood Preparedness

    No full text
    Abstract The risk perception paradox illustrates the perception of natural hazards as not directly related to a willingness to act or engage in precautionary behavior. Yet the utilization of participatory processes can help to overcome this gap. In a practical example in the watershed of the Danube River and its contributing streams in Germany, we aimed to solve questions about the value of participatory modeling as a method to bridge the gap linked to flood polder planning and a relocation of a dike for protection against high floods (centennial floods and rarer). Local communities, citizen initiatives, and nongovernmental environmental organizations joined together for round table discussions initiated by the water management authorities. A participatory modeling process enabled these diverse stakeholders to engage with the experts who built the groundwater models for the planning process. As part of this study, two case studies are presented. In the first example, neutral mediators assisted the round table “Flood Polder Katzau (Danube)” in order to cultivate mutual trust and understanding between the authorities and the former opponents of the project. This process is still ongoing, challenged by long-term planning and the more immediate obstacle of current political changes. The second case study is located on the river Alz, a tributary of the river Inn, which flows into the Danube, where the relocation of a dike was planned. This article demonstrates how participatory modeling contributes to bridging the gap between a local resident’s risk perception and real action in the case of flood preparedness

    Effects of Land Use and Climate Change on Groundwater and Ecosystems at the Middle Reaches of the Tarim River Using the MIKE SHE Integrated Hydrological Model

    No full text
    The Tarim basin is a unique ecosystem. The water from the Tarim River supports both wildlife and humans. To analyze the effects of both land use and climate changes on groundwater, a research site was established at Yingibazar, which is a river oasis along the middle section of the Tarim River. A hydrological survey was performed to assess the general water cycle in this area with special emphasis on groundwater replenishment as well as the impact of agricultural irrigation on the riparian natural vegetation with respect to salt transport and depth of groundwater. Although high-resolution input data is scarce for this region, simulation of water cycle processes was performed using the hydrological model MIKE SHE (DHI). The results of the calibrated model show that natural flooding is the major contributor to groundwater recharge. There is also a close interaction between irrigated agricultural areas and the adjacent natural vegetation for groundwater levels and salinity up to 300 m away from the fields. Furthermore, the source of water used for irrigation (i.e., river and/or groundwater) has a high impact on groundwater levels and salt transportation efficiency. The ongoing expansion of agricultural areas is rapidly destroying natural vegetation, floodplains, and their natural flow paths. Our results show that more unstable annual Tarim floods will occur in the future under the background of climate change. Therefore, integrated hydrological simulations were also performed for 2050 and 2100 using MIKE SHE. The results confirm that after the glaciers melt in the Tian Shan Mountains, serious aquifer depletion and environmental degradation will occur in the area, causing great difficulties for the local people

    Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change

    No full text
    The Tarim River basin, located in Xinjiang, NW China, is the largest endorheic river basin in China and one of the largest in all of Central Asia. Due to the extremely arid climate, with an annual precipitation of less than 100 mm, the water supply along the Aksu and Tarim rivers solely depends on river water. This is linked to anthropogenic activities (e.g., agriculture) and natural and semi-natural ecosystems as both compete for water. The ongoing increase in water consumption by agriculture and other human activities in this region has been enhancing the competition for water between human needs and nature. Against this background, 11 German and 6 Chinese universities and research institutes have formed the consortium SuMaRiO (Sustainable Management of River Oases along the Tarim River; http://www.sumario.de), which aims to create a holistic picture of the availability of water resources in the Tarim River basin and the impacts on anthropogenic activities and natural ecosystems caused by the water distribution within the Tarim River basin. On the basis of the results from field studies and modeling approaches as well as from suggestions by the relevant regional stakeholders, a decision support tool (DST) will be implemented that will then assist stakeholders in balancing the competition for water, acknowledging the major external effects of water allocation to agriculture and to natural ecosystems. This consortium was formed in 2011 and is funded by the German Federal Ministry of Education and Research. As the data collection phase was finished this year, the paper presented here brings together the results from the fields from the disciplines of climate modeling, cryology, hydrology, agricultural sciences, ecology, geoinformatics, and social sciences in order to present a comprehensive picture of the effects of different water availability schemes on anthropogenic activities and natural ecosystems along the Tarim River. The second objective is to present the project structure of the whole consortium, the current status of work (i.e., major new results and findings), explain the foundation of the decision support tool as a key product of this project, and conclude with application recommendations for the region. The discharge of the Aksu River, which is the major tributary of the Tarim, has been increasing over the past 6 decades. From 1989 to 2011, agricultural area more than doubled: cotton became the major crop and there was a shift from small-scale to large-scale intensive farming. The ongoing increase in irrigated agricultural land leads to the increased threat of salinization and soil degradation caused by increased evapotranspiration. Aside from agricultural land, the major natural and semi-natural ecosystems are riparian (Tugai) forests, shrub vegetation, reed beds, and other grassland, as well as urban and peri-urban vegetation. Within the SuMaRiO cluster, focus has been set on the Tugai forests, with Populus euphratica as the dominant tree species, because these forests belong to the most productive and species-rich natural ecosystems of the Tarim River basin. At sites close to the groundwater, the annual stem diameter increments of Populus euphratica correlated with the river runoffs of the previous year. However, the natural river dynamics cease along the downstream course and thus hamper the recruitment of Populus euphratica. A study on the willingness to pay for the conservation of the natural ecosystems was conducted to estimate the concern of the people in the region and in China's capital. These household surveys revealed that there is a considerable willingness to pay for conservation of the natural ecosystems, with mitigation of dust and sandstorms considered the most important ecosystem service. Stakeholder dialogues contributed to creating a scientific basis for a sustainable management in the future
    corecore