9 research outputs found

    Hydrogen permeation through surface oxides of titanium iron alloys

    Get PDF
    Please click Additional Files below to see the full abstrac

    Influence of near-surface oxide layers on TiFe hydrogenation: mechanistic insights and implications for hydrogen storage applications

    No full text
    The inevitable formation of passivating oxide films on the surface of the TiFe intermetallic compound limits its performance as a stationary hydrogen storage material. Extensive experimental efforts have been dedicated to the activation of TiFe, i.e. oxide layer removal prior to utilization for hydrogen storage. However, development of an efficient activation protocol necessitates a fundamental understanding of the composition and structure of the air-exposed surface and its interaction with hydrogen, which currently is absent. Therefore, in this study we explored the growth and nature of the oxide films on the most exposed TiFe surface (110) in depth using static and dynamic first-principles methods. We identified the lowest energy structures for six oxygen coverages up to approximately 1.12 nm of thickness with a global optimization method and studied the temperature effects and structural evolution of the oxide phases in detail via ab-initio molecular dynamics (AIMD). Based on structural similarity and coordination analysis, motifs for TiO2, TiFeO3 as well as Ti(FeO2)x (x = 2, 3 or 5) phases were identified. On evaluating the interaction of the oxidized surface with hydrogen, a minimal energy barrier of 0.172 eV was predicted for H2 dissociation while the H migration from the top of the oxidized surface to the bulk TiFe was limited by several high-lying energy barriers above 1.4 eV. Our mechanistic insights will prove themselves valuable for informed designs towards new activation methods of TiFe and related systems as hydrogen storage materials

    Using DFTB to Model Photocatalytic Anatase-Rutile TiO2 Nanocrystalline Interfaces and Their Band Alignment

    No full text
    Band alignment effects of anatase and rutile nanocrystals in TiO2 powders lead to electron-hole separation, increasing the photocatalytic efficiency of these powders. While size effects and types of possible alignments have been extensively studied, the effect of interface geometries of bonded nanocrystal structures on the alignment is poorly understood. To allow conclusive studies of a vast variety of bonded systems in different orientations, we have developed a new density functional tight-binding parameter set to properly describe quantum confinement in nanocrystals. By applying this set, we found a quantitative influence of the interface structure on the band alignment.Title in WoS: Using DFTB to Model Photocatalytic Anatase-Rutile TiO2 Nanocrystalline Interfaces and Their Band Alignment</p

    Efficient and interpretable graph network representation for angle-dependent properties applied to optical spectroscopy

    No full text
    Abstract Graph neural networks are attractive for learning properties of atomic structures thanks to their intuitive graph encoding of atoms and bonds. However, conventional encoding does not include angular information, which is critical for describing atomic arrangements in disordered systems. In this work, we extend the recently proposed ALIGNN (Atomistic Line Graph Neural Network) encoding, which incorporates bond angles, to also include dihedral angles (ALIGNN-d). This simple extension leads to a memory-efficient graph representation that captures the complete geometry of atomic structures. ALIGNN-d is applied to predict the infrared optical response of dynamically disordered Cu(II) aqua complexes, leveraging the intrinsic interpretability to elucidate the relative contributions of individual structural components. Bond and dihedral angles are found to be critical contributors to the fine structure of the absorption response, with distortions that represent transitions between more common geometries exhibiting the strongest absorption intensity. Future directions for further development of ALIGNN-d are discussed

    EPFR formation from phenol adsorption on Al2O3 and TiO2: EPR and EELS studies

    Get PDF
    We have examined the formation of environmentally persistent free radicals (EPFRs) from phenol over alumina and titania using both powder and single-crystal samples. Electron paramagnetic resonance (EPR) studies of phenol adsorbed on metal oxide powders indicates radical formation on both titania and alumina, with both oxides forming one faster-decaying species (lifetime on the order of 50-100 h) and one slower-decaying species (lifetimes on the order of 1000 h or more). Electron energy loss spec- troscopy (EELS) measurements comparing physisorbed phenol on single-crystal TiO2(1 1 0) to phenoxyl radicals on the same substrate indicate distinct changes in the π-π* transitions from phenol after radical formation. The identical shifts are observed from EELS studies of phenoxyl radicals on ultrathin alumina grown on NiAl(11 0), indicating that this shift in the π-π* transition may be taken as a general hallmark of phenoxyl radical formation. © 2012 Elsevier B.V. All rights reserved

    EPFR formation from phenol adsorption on Al2O3 and TiO2: EPR and EELS studies

    No full text
    We have examined the formation of environmentally persistent free radicals (EPFRs) from phenol over alumina and titania using both powder and single-crystal samples. Electron paramagnetic resonance (EPR) studies of phenol adsorbed on metal oxide powders indicates radical formation on both titania and alumina, with both oxides forming one faster-decaying species (lifetime on the order of 50-100 hours) and one slower-decayng species (lifetimes on the order of 1000 hours or more). Electron energy loss spectroscopy (EELS) measurements comparing physisorbed phenol on single-crystal TiO(2)(110) to phenoxyl radicals on the same substrate indicate distinct changes in the π-π* transitions from phenol after radical formation. The identical shifts are observed from EELS studies of phenoxyl radicals on ultrathin alumina grown on NiAl(110), indicating that this shift in the π-π* transition may be taken as a general hallmark of phenoxyl radical formation

    Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties

    Get PDF
    International audienceAbstract Hydrides based on magnesium and intermetallic compounds provide a viable solution to the challenge of energy storage from renewable sources, thanks to their ability to absorb and desorb hydrogen in a reversible way with a proper tuning of pressure and temperature conditions. Therefore, they are expected to play an important role in the clean energy transition and in the deployment of hydrogen as an efficient energy vector. This review, by experts of Task 40 ‘Energy Storage and Conversion based on Hydrogen’ of the Hydrogen Technology Collaboration Programme of the International Energy Agency, reports on the latest activities of the working group ‘Magnesium- and Intermetallic alloys-based Hydrides for Energy Storage’. The following topics are covered by the review: multiscale modelling of hydrides and hydrogen sorption mechanisms; synthesis and processing techniques; catalysts for hydrogen sorption in Mg; Mg-based nanostructures and new compounds; hydrides based on intermetallic TiFe alloys, high entropy alloys, Laves phases, and Pd-containing alloys. Finally, an outlook is presented on current worldwide investments and future research directions for hydrogen-based energy storage
    corecore