4,835 research outputs found
Adsorption of cobalt on graphene: Electron correlation effects from a quantum chemical perspective
In this work, we investigate the adsorption of a single cobalt atom (Co) on
graphene by means of the complete active space self-consistent field approach,
additionally corrected by the second-order perturbation theory. The local
structure of graphene is modeled by a planar hydrocarbon cluster
(CH). Systematic treatment of the electron correlations and the
possibility to study excited states allow us to reproduce the potential energy
curves for different electronic configurations of Co. We find that upon
approaching the surface, the ground-state configuration of Co undergoes several
transitions, giving rise to two stable states. The first corresponds to the
physisorption of the adatom in the high-spin ()
configuration, while the second results from the chemical bonding formed by
strong orbital hybridization, leading to the low-spin () state.
Due to the instability of the configuration, the adsorption energy of Co
is small in both cases and does not exceed 0.35 eV. We analyze the obtained
results in terms of a simple model Hamiltonian that involves Coulomb repulsion
() and exchange coupling () parameters for the 3 shell of Co, which we
estimate from first-principles calculations. We show that while the exchange
interaction remains constant upon adsorption ( eV), the Coulomb
repulsion significantly reduces for decreasing distances (from 5.3 to
2.60.2 eV). The screening of favors higher occupations of the 3
shell and thus is largely responsible for the interconfigurational transitions
of Co. Finally, we discuss the limitations of the approaches that are based on
density functional theory with respect to transition metal atoms on graphene,
and we conclude that a proper account of the electron correlations is crucial
for the description of adsorption in such systems.Comment: 12 pages, 6 figures, 2 table
Interfacial interactions between local defects in amorphous SiO and supported graphene
We present a density functional study of graphene adhesion on a realistic
SiO surface taking into account van der Waals (vdW) interactions. The
SiO substrate is modeled at the local scale by using two main types of
surface defects, typical for amorphous silica: the oxygen dangling bond and
three-coordinated silicon. The results show that the nature of adhesion between
graphene and its substrate is qualitatively dependent on the surface defect
type. In particular, the interaction between graphene and silicon-terminated
SiO originates exclusively from the vdW interaction, whereas the
oxygen-terminated surface provides additional ionic contribution to the binding
arising from interfacial charge transfer (-type doping of graphene). Strong
doping contrast for the different surface terminations provides a mechanism for
the charge inhomogeneity of graphene on amorphous SiO observed in
experiments. We found that independent of the considered surface morphologies,
the typical electronic structure of graphene in the vicinity of the Dirac point
remains unaltered in contact with the SiO substrate, which points to the
absence of the covalent interactions between graphene and amorphous silica. The
case of hydrogen-passivated SiO surfaces is also examined. In this
situation, the binding with graphene is practically independent of the type of
surface defects and arises, as expected, from the vdW interactions. Finally,
the interface distances obtained are shown to be in good agreement with recent
experimental studies.Comment: 10 pages, 4 figure
Ledoux-Convection in Protoneutron Stars --- a Clue to Supernova Nucleosynthesis?
Two-dimensional hydrodynamical simulations of the deleptonization of a newly
formed neutron star were performed. Driven by negative lepton fraction and
entropy gradients, convection starts near the neutrinosphere about 20-30 ms
after core bounce, but moves deeper into the protoneutron star, and after about
one second the whole protoneutron star is convective. The deleptonization of
the star proceeds much faster than in the corresponding spherically symmetrical
model because the lepton flux and the neutrino luminosities increase by up to a
factor of two. The convection below the neutrinosphere raises the
neutrinospheric temperatures and mean energies of the emitted neutrinos by
10-20%. This can have important implications for the supernova explosion
mechanism and changes the detectable neutrino signal from the Kelvin-Helmholtz
cooling of the protoneutron star. In particular, the enhanced electron neutrino
flux relative to the electron antineutrino flux during the early post-bounce
evolution might solve the overproduction problem of certain elements in the
neutrino-heated ejecta in models of type-II supernova explosions.Comment: 17 pages, LaTeX, 8 postscript figures, uses epsf.sty. To appear in
ApJ 473 (Letters), 1996 December 1
Graphene adhesion on mica: Role of surface morphology
We investigate theoretically the adhesion and electronic properties of
graphene on a muscovite mica surface using the density functional theory (DFT)
with van der Waals (vdW) interactions taken into account (the vdW-DF approach).
We found that irregularities in the local structure of cleaved mica surface
provide different mechanisms for the mica-graphene binding. By assuming
electroneutrality for both surfaces, the binding is mainly of vdW nature,
barely exceeding thermal energy per carbon atom at room temperature. In
contrast, if potassium atoms are non uniformly distributed on mica, the
different regions of the surface give rise to - or -type doping of
graphene. In turn, an additional interaction arises between the surfaces,
significantly increasing the adhesion. For each case the electronic states of
graphene remain unaltered by the adhesion. It is expected, however, that the
Fermi level of graphene supported on realistic mica could be shifted relative
to the Dirac point due to asymmetry in the charge doping. Obtained variations
of the distance between graphene and mica for different regions of the surface
are found to be consistent with recent atomic force microscopy experiments. A
relative flatness of mica and the absence of interlayer covalent bonding in the
mica-graphene system make this pair a promising candidate for practical use.Comment: 6 pages, 3 figure
Adsorption of diatomic halogen molecules on graphene: A van der Waals density functional study
The adsorption of fluorine, chlorine, bromine, and iodine diatomic molecules
on graphene has been investigated using density functional theory with taking
into account nonlocal correlation effects by means of vdW-DF approach. It is
shown that the van der Waals interaction plays a crucial role in the formation
of chemical bonding between graphene and halogen molecules, and is therefore
important for a proper description of adsorption in this system. In-plane
orientation of the molecules has been found to be more stable than the
orientation perpendicular to the graphene layer. In the cases of F, Br
and I we also found an ionic contribution to the binding energy, slowly
vanishing with distance. Analysis of the electronic structure shows that ionic
interaction arises due to the charge transfer from graphene to the molecules.
Furthermore, we found that the increase of impurity concentration leads to the
conduction band formation in graphene due to interaction between halogen
molecules. In addition, graphite intercalation by halogen molecules has been
investigated. In the presence of halogen molecules the binding between graphite
layers becomes significantly weaker, which is in accordance with the results of
recent experiments on sonochemical exfoliation of intercalated graphite.Comment: Submitted to PR
Experiment K-6-12. Morphometric studies of atrial or granules and hepatocytes. Part 1: Morphometric study of the liver; Part 2: The atrial granular accumulations
The livers of flight, F, rats from the Cosmos 1887 mission were markedly paler and heavier than those of the synchronous, S, and vivarium, V, controls. In the F group, microscopic study revealed extensive hepatocytic intracytoplasmic vacuolization which was moderate in the S and minimal in the V groups. The vacuoles were not sudanophilic and therefore were regarded as glycogenic in origin. To obtain objective data concerning the extent of the vacuolization, livers were examined by computer assisted morphometry. Measurements of profile area and perimeter of the hepatocyte nuclei and vacuoles were evaluated according to stereological principles. Results indicated that the volume density of the nuclei was less in the F group than in the S(p equal less than 0.0002) and V(p equal less than 0.001) groups. Mean volume of individual nuclei did not differ. Volume density of the vacuoles was greater in the F than in the V group (p equal less than 0.02) while their mean diameter was less (p equal less than 0.05). To ascertain the relationship between increase in liver weight of the flight animals and the results of this study, an assumption was made that the specific gravity of the vacuolar contents was similar to the other extranuclear components of the hepatocyte. On that basis, calculations showed that the elevated vacuolar volume density in the flight group did not cause the increased liver weight in those animals, but that the non-nuclear, non-vacuolar parenchymal compartment did contribute significantly. Factors that may have played a causal role in liver weight and vacuolar compartment increases are discussed
Pinning control of fractional-order weighted complex networks
In this paper, we consider the pinning control problem of fractional-order weighted complex dynamical networks. The well-studied integer-order complex networks are the special cases of the fractional-order ones. The network model considered can represent both directed and undirected weighted networks. First, based on the eigenvalue analysis and fractional-order stability theory, some local stability properties of such pinned fractional-order networks are derived and the valid stability regions are estimated. A surprising finding is that the fractional-order complex networks can stabilize itself by reducing the fractional-order q without pinning any node. Second, numerical algorithms for fractional-order complex networks are introduced in detail. Finally, numerical simulations in scale-free complex networks are provided to show that the smaller fractional-order q, the larger control gain matrix D, the larger tunable weight parameter , the larger overall coupling strength c, the more capacity that the pinning scheme may possess to enhance the control performance of fractional-order complex networks
XMM-Newton observation of the ULIRG NGC 6240: The physical nature of the complex Fe K line emission
We report on an XMM-Newton observation of the ultraluminous infrared galaxy
NGC 6240. The 0.3-10 keV spectrum can be successfully modelled with: (i) three
collisionally ionized plasma components with temperatures of about 0.7, 1.4,
and 5.5 keV; (ii) a highly absorbed direct power-law component; and (iii) a
neutral Fe K_alpha and K_beta line. We detect a significant neutral column
density gradient which is correlated with the temperature of the three plasma
components. Combining the XMM-Newton spectral model with the high spatial
resolution Chandra image we find that the temperatures and the column densities
increase towards the center.
With high significance, the Fe K line complex is resolved into three distinct
narrow lines: (i) the neutral Fe K_alpha line at 6.4 keV; (ii) an ionized line
at about 6.7 keV; and (iii) a higher ionized line at 7.0 keV (a blend of the Fe
XXVI and the Fe K_beta line). While the neutral Fe K line is most probably due
to reflection from optically thick material, the Fe XXV and Fe XXVI emission
arises from the highest temperature ionized plasma component.
We have compared the plasma parameters of the ultraluminous infrared galaxy
NGC 6240 with those found in the local starburst galaxy NGC 253. We find a
striking similarity in the plasma temperatures and column density gradients,
suggesting a similar underlying physical process at work in both galaxies.Comment: 8 pages including 9 figures. Accepted for publication in A&
- …