175 research outputs found

    Antiviral and Virucidal Activities of Nα-Cocoyl-L-Arginine Ethyl Ester

    Get PDF
    Various amino acid-derived compounds, for example, Nα-Cocoyl-L-arginine ethyl ester (CAE), alkyloxyhydroxylpropylarginine, arginine cocoate, and cocoyl glycine potassium salt (Amilite), were examined for their virucidal activities against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2), influenza A virus (IAV), and poliovirus type 1 (PV-1) in comparison to benzalkonium chloride (BKC) and sodium dodecylsulfate (SDS) as a cationic and anionic control detergent and also to other commercially available disinfectants. While these amino acid-derived compounds were all effective against HSV-1 and HSV-2, CAE and Amilite were the most effective. These two compounds were, however, not as effective against IAV, another enveloped virus, as against HSV. Cytotoxicity of CAE was weak; at 0.012%, only 5% of the cells were killed under the conditions, in which 100% cells were killed by either SDS or BKC. In addition to these direct virucidal effects, CAE inhibited the virus growth in the HSV-1- or PV-1-infected cells even at 0.01%. These results suggest a potential application of CAE as a therapeutic or preventive medicine against HSV superficial infection at body surface

    Consistent scaling of whole-shoot respiration between Moso bamboo (Phyllostachys pubescens) and trees

    Get PDF
    Both Moso bamboo (Phyllostachys pubescens) and tree forests have a large biomass; they are considered to play an important role in ecosystem carbon budgets. The scaling relationship between individual whole-shoot (i.e., aboveground parts) respiration and whole-shoot mass provides a clue for comparing the carbon budgets of Moso bamboo and tree forests. However, nobody has empirically demonstrated whether there is a difference between these forest types in the whole-shoot scaling relationship. We developed whole-shoot chambers and measured the shoot respiration of 58 individual mature bamboo shoots from the smallest to the largest in a Moso bamboo forest, and then compared them with that of 254 tree shoots previously measured. For 30 bamboo shoots, we measured the respiration rate of leaves, branches, and culms. We found that the scaling exponent of whole-shoot respiration of bamboo fitted by a simple power function on a log–log scale was 0.843 (95 % CI 0.797–0.885), which was consistent with that of trees, 0.826 (95 % CI 0.799–0.851), but higher than 3/4, the value typifying the Kleiber’s rule. The respiration rates of leaves, branches, and culms at the whole-shoot level were proportional to their mass, revealing a constant mean mass-specific respiration of 1.19, 0.224, and 0.0978 µmol CO2 kg- 1 s- 1, respectively. These constant values suggest common traits of organs among physiologically integrated ramets within a genet. Additionally, the larger the shoots, the smaller the allocation of organ mass to the metabolically active leaves, and the larger the allocation to the metabolically inactive culms. Therefore, these shifts in shoot-mass partitioning to leaves and culms caused a negative metabolic scaling of Moso bamboo shoots. The observed convergent metabolic scaling of Moso bamboo and trees may facilitate comparisons of the ecosystem carbon budgets of Moso bamboo and tree forests. © 2021, The Author(s)

    小学校1年生を対象にした投運動学習に関する研究 :用具としての楕円ボールがこどもの投運動に与える影響

    Get PDF
     Despite an increase in physical characteristics,children's hrowing performance has been declining over the past 20 years. This is problematic as it is vital for children at the elementary age to master individual gross-motor skills, including ball play. Although many elementary school educational programs incorporate ball play activities such as dodge ball, basketball or baseball, many children lack age-specific throwing and catching skills. Consequently, children become sedentary with little or no physical activities in their later lives. The aims of this study were to examine the effect of throwing ability on children's ball skills, and motivation to engage in throwing performance during ball related activities using the unique ball.  For this study, 89 participants (1st grade elementary school) were placed into three groups: Play with an ellipse ball; Play with a regular ball; and, Control. 86 participants completed the tests. The study measured throwing distance with a softball that required proper throwing mechanics for quantifying throwing ability. Throwing mechanics, participant's expression to the ball play, and learning strategy were measured by applying kinematic analyses on the ball's trajectory, body movement, and their behavior.  The results showed the participants in the ellipse ball group showed significantly greater development of precision grip skill, release angle and cooperative movement skills with enjoyment

    Suzaku observation of the giant radio galaxy 3C 326

    Full text link
    A Suzaku observation of a giant radio galaxy, 3C 326, which has a physical size of about 2 Mpc, was conducted on 2008 January 19 -- 21. In addition to several X-ray sources, diffuse emission was significantly detected associated with its west lobe, but the east lobe was contaminated by an unidentified X-ray source WARP J1552.4+2007. After careful evaluation of the X-ray and Non X-ray background, the 0.4 -- 7 keV X-ray spectrum of the west lobe is described by a power-law model. The photon index and 1 keV flux density was derived as 1.820.24+0.26±0.041.82_{-0.24}^{+0.26}\pm0.04 and 19.43.2+3.3±3.019.4_{-3.2}^{+3.3}\pm 3.0 nJy, respectively, where the first and second errors represent the statistical and systematic ones. The diffuse X-rays were attributed to be inverse Compton radiation by the synchrotron radio electrons scattering off the cosmic microwave background photons. This radio galaxy is the largest among those with lobes detected through inverse Compton X-ray emission. A comparison of the radio to X-ray fluxes yields the energy densities of electron and magnetic field as ue=(2.3±0.3±0.3)×1013u_e = (2.3 \pm 0.3 \pm 0.3) \times 10^{-13} ergs/cm3 and um=(1.20.1+0.2±0.2)×1014u_m = (1.2_{-0.1}^{+0.2}\pm 0.2) \times 10^{-14} ergs/cm3, respectively. The galaxy is suggested to host a low luminosity nucleus with an absorption-corrected 2 -- 10 keV luminosity of <2×1042<2 \times 10^{42} ergs/s, together with a relatively weak radio core. The energetics in the west lobe of 3C 326 were compared with those of moderate radio galaxies with a size of 100\sim 100 kpc. The west lobe of 3C 326 is confirmed to agree with the correlations for the moderate radio galaxies, ueD2.2±0.4u_e \propto D^{-2.2\pm0.4} and umD2.4±0.4u_m \propto D^{-2.4\pm0.4}, where DD is their total physical size. This implies that the lobes of 3C 326 are still being energized by the jet, despite the current weakness of the nucleus.Comment: 11 pages, 10 figures, 6 tables, Accepted for ApJ (v706 issue

    Ontogenetic changes in root and shoot respiration, fresh mass, and surface area of Fagus crenata

    Get PDF
    BACKGROUND AND AIMS: To date, studies on terrestrial plant ecology and evolution have primarily focused on the trade-off patterns in the allocation of metabolic production to roots and shoots in individual plants and the scaling of whole-plant respiration. However, few empirical studies have investigated the root:shoot ratio by considering scaling whole-plant respiration at various sizes throughout ontogeny. METHODS: Here, using a whole-plant chamber system, we measured the respiration rates, fresh mass, and surface area of entire roots and shoots from 377 Fagus crenata individuals, from germinating seeds to mature trees, collected from five different Japanese provenances. Nonlinear regression analysis was performed for scaling of root and shoot respiration, fresh mass, and surface area with body size. KEY RESULTS: Whole-plant respiration increased rapidly in germinating seeds. In the seedling to mature tree size range, the scaling of whole-plant respiration to whole-plant fresh mass was expressed as a linear trend on the log-log coordinates (exponent slightly larger than 0.75). In the same body size range, root and shoot respiration versus whole-plant fresh mass were modelled by upward convex (exponent decreased from 2.35 to 0.638) and downward convex trends (exponent increased from -0.918 to 0.864), respectively. The root fraction in the whole-plant respiration, fresh mass, and surface area continuously shifted throughout ontogeny, increasing in smaller seedlings during early growth stages and decreasing in larger trees. CONCLUSIONS: Our results suggest a gradual shift in allocation priorities of metabolic energy from root in seedlings to shoot in mature trees, providing insights into how roots contribute to shoot and whole-plant growth during ontogeny. The models of root:shoot ratio in relation to whole-plant physiology could be applied in tree growth modelling, and in linking the different levels of ecological phenomena, from individuals to ecosystems.Publishe
    corecore