30 research outputs found

    Isolation and Structural Determination of the First 8-epi-type Tetrodotoxin Analogs from the Newt, Cynops ensicauda popei, and Comparison of Tetrodotoxin Analogs Profiles of This Newt and the Puffer Fish, Fugu poecilonotus

    Get PDF
    Identification of new tetrodotoxin (TTX) analogs from TTX-possessing animals might provide insight into its biosynthesis and metabolism. In this study, four new analogs, 8-epi-5,6,11-trideoxyTTX, 4,9-anhydro-8-epi-5,6,11-trideoxyTTX, 1-hydroxy-8-epi-5,6,11-trideoxyTTX, and 1-hydroxy-4,4a-anhydro-8-epi-5,6,11-trideoxyTTX, were isolated from the newt, Cynops ensicauda popei, and their structures were determined using spectroscopic methods. These are the first 8-epi-type analogs of TTX that have been found in a natural source. Furthermore, we examined the composition of the TTX analogs in this newt and in the ovary of the puffer fish, Fugu poecilonotus, using LC/MS. The results indicate that TTX and 11-deoxyTTX were present in both sources. However, 6-epiTTX and 8-epi-type analogs were detected only in the newt, while 5,6,11-trideoxyTTX was a specific and major analog in the puffer fish. Such considerable differences among analog compositions might reflect differences in the biosynthesis or metabolism of TTX between these animals

    Tetrodotoxin and Its Analogues in the Pufferfish Arothron hispidus and A. nigropunctatus from the Solomon Islands: A Comparison of Their Toxin Profiles with the Same Species from Okinawa, Japan

    No full text
    Pufferfish poisoning has not been well documented in the South Pacific, although fish and other seafood are sources of protein in these island nations. In this study, tetrodotoxin (TTX) and its analogues in each organ of the pufferfish Arothron hispidus and A. nigropunctatus collected in the Solomon Islands were investigated using high resolution LC-MS. The toxin profiles of the same two species of pufferfish from Okinawa, Japan were also examined for comparison. TTXs concentrations were higher in the skin of both species from both regions, and relatively lower in the liver, ovary, testis, stomach, intestine, and flesh. Due to higher TTX concentrations (51.0 and 28.7 µg/g at highest) detected in the skin of the two species from the Solomon Islands (saxitoxin was <0.02 µg/g), these species should be banned from consumption. Similar results were obtained from fish collected in Okinawa, Japan: TTX in the skin of A. hispidus and A. nigropunctatus were 12.7 and 255 µg/g, respectively, at highest, and saxitoxin was also detected in the skin (2.80 µg/g at highest) and ovary of A. hispidus. TTX, 5,6,11-trideoxyTTX (with its 4-epi form), and its anhydro forms were the most abundant, and 11-oxoTTX was commonly detected in the skin

    Pufferfish Saxitoxin and Tetrodotoxin Binding Protein (PSTBP) Analogues in the Blood Plasma of the Pufferfish Arothron nigropunctatus, A. hispidus, A. manilensis, and Chelonodon patoca

    No full text
    Pufferfish saxitoxin and tetrodotoxin (TTX) binding protein (PSTBP) is a glycoprotein that we previously isolated from the blood plasma of the pufferfish Takifugu pardalis; this protein was also detected in seven species of the genus Takifugu. We proposed that PSTBP is a carrier protein for TTX in pufferfish; however, PSTBP had not yet been found in genera other than Takifugu. In this study, we investigated the presence of PSTBP-like proteins in the toxic pufferfish Arothron nigropunctatus, A. hispidus, A. manilensis, and Chelonodon patoca. On the basis of ultrafiltration experiments, TTX was found to be present and partially bound to proteins in the plasma of these pufferfish, and Western blot analyses with anti-PSTBP antibody revealed one or two bands per species. The observed decreases in molecular mass following deglycosylation with glycopeptidase F suggest that these positive proteins are glycoproteins. The molecular masses of the deglycosylated proteins detected in the three Arothron species were larger than that of PSTBP in the genus Takifugu, whereas the two bands detected in C. patoca had molecular masses similar to that of tributyltin-binding protein-2 (TBT-bp2). The N-terminal amino acid sequences of 23–29 residues of these detected proteins were all homologous with those of PSTBP and TBT-bp2

    In Vitro Acylation of Okadaic Acid in the Presence of Various Bivalves’ Extracts

    Get PDF
    The dinoflagellate Dinophysis spp. is responsible for diarrhetic shellfish poisoning (DSP). In the bivalves exposed to the toxic bloom of the dinoflagellate, dinophysistoxin 3 (DTX3), the 7-OH acylated form of either okadaic acid (OA) or DTX1, is produced. We demonstrated in vitro acylation of OA with palmitoyl CoA in the presence of protein extract from the digestive gland, but not other tissues of the bivalve Mizuhopecten yessoensis. The yield of 7-O-palmitoyl OA reached its maximum within 2 h, was the highest at 37 °C followed by 28 °C, 16 °C and 4 °C and was the highest at pH 8 in comparison with the yields at pH 6 and pH 4. The transformation also proceeded when the protein extract was prepared from the bivalves Corbicula japonica and Crassostrea gigas. The OA binding protein OABP2 identified in the sponge Halichondria okadai was not detected in the bivalve M. yessoensis, the bivalve Mytilus galloprovincialis and the ascidian Halocynthia roretzi, though they are known to accumulate diarrhetic shellfish poisoning toxins. Since DTX3 does not bind to protein phosphatases 1 and 2A, the physiological target for OA and DTXs in mammalian cells, the acylation of DSP toxins would be related to a detoxification mechanism for the bivalve species

    Isolation and Structural Determination of the First 8-epi-type Tetrodotoxin Analogs from the Newt, Cynops ensicauda popei, and Comparison of Tetrodotoxin Analogs Profiles of This Newt

    No full text
    Abstract: Identification of new tetrodotoxin (TTX) analogs from TTX-possessing animals might provide insight into its biosynthesis and metabolism. In this study, four new analogs, 8-epi-5,6,11-trideoxyTTX, 4,9-anhydro-8-epi-5,6,11-trideoxyTTX, 1-hydroxy-8-epi-5,6,11-trideoxyTTX, and 1-hydroxy-4,4a-anhydro-8-epi-5,6,11-trideoxyTTX, were isolated from the newt, Cynops ensicauda popei, and their structures were determined using spectroscopic methods. These are the first 8-epi-type analogs of TTX that have been found in a natural source. Furthermore, we examined the composition of the TTX analogs in this newt and in the ovary of the puffer fish, Fugu poecilonotus, using LC/MS. The results indicate that TTX and 11-deoxyTTX were present in both sources. However, 6-epiTTX and 8-epi-type analogs were detected only in the newt, while 5,6,11-trideoxyTTX was a specific and major analog in the puffer fish. Such considerable differences among analog compositions might reflect differences in the biosynthesis or metabolism of TTX between these animals
    corecore