425 research outputs found

    The Probability Distribution Function of Column Density in Molecular Clouds

    Get PDF
    (Abridged) We discuss the probability distribution function (PDF) of column density resulting from density fields with lognormal PDFs, applicable to isothermal gas (e.g., probably molecular clouds). We suggest that a ``decorrelation length'' can be defined as the distance over which the density auto-correlation function has decayed to, for example, 10% of its zero-lag value, so that the density ``events'' along a line of sight can be assumed to be independent over distances larger than this, and the Central Limit Theorem should be applicable. However, using random realizations of lognormal fields, we show that the convergence to a Gaussian is extremely slow in the high- density tail. Thus, the column density PDF is not expected to exhibit a unique functional shape, but to transit instead from a lognormal to a Gaussian form as the ratio η\eta of the column length to the decorrelation length increases. Simultaneously, the PDF's variance decreases. For intermediate values of η\eta, the column density PDF assumes a nearly exponential decay. We then discuss the density power spectrum and the expected value of η\eta in actual molecular clouds. Observationally, our results suggest that η\eta may be inferred from the shape and width of the column density PDF in optically-thin-line or extinction studies. Our results should also hold for gas with finite-extent power-law underlying density PDFs, which should be characteristic of the diffuse, non-isothermal neutral medium (temperatures ranging from a few hundred to a few thousand degrees). Finally, we note that for η100\eta \gtrsim 100, the dynamic range in column density is small (\lesssim a factor of 10), but this is only an averaging effect, with no implication on the dynamic range of the underlying density distribution.Comment: 13 pages, 7 figures (10 postscript files). Accepted in ApJ. Eliminated implication that ratio of column length to correlation length necessarily increases with resolution, and thus that 3D simulations are unresolved. Added discussion of dependence of autocorrelation function with parameters of the turbulenc

    Simulation studies of a phenomenological model for elongated virus capsid formation

    Full text link
    We study a phenomenological model in which the simulated packing of hard, attractive spheres on a prolate spheroid surface with convexity constraints produces structures identical to those of prolate virus capsid structures. Our simulation approach combines the traditional Monte Carlo method with a modified method of random sampling on an ellipsoidal surface and a convex hull searching algorithm. Using this approach we identify the minimum physical requirements for non-icosahedral, elongated virus capsids, such as two aberrant flock house virus (FHV) particles and the prolate prohead of bacteriophage ϕ29\phi_{29}, and discuss the implication of our simulation results in the context of recent experimental findings. Our predicted structures may also be experimentally realized by evaporation-driven assembly of colloidal spheres

    Geographical Indication as a vector of regional development and the possibility of its application in the artisanal crystal sector of Vale do Itajaí

    Get PDF
    In a context marked by the deepening of globalization, geographic dispersion of industrial production and international division of labor, the sector of crystal craft of the Vale of Itajaí in the State of Santa Catarina/ Brazil, has been facing different challenges and looking for new perspectives of competitiveness. The aim of the paper is to address, more specifically, the question of Geographic Indication as a key factor in the strategy of regional development, linking the productive organization and performance in the industrial sector to the socioeconomic situation of the region and its development. To this end, the paper discussed the feasibility of obtaining Geographic Indication and its impacts on restructuring of territories, reorganization of production thru clusters and regional development. Finally, the study pointed out to which extent geographical proximity and territorial economic activity may affect the strategy of competitiveness and international integration of the firms connected with the crystal industry in the regio

    Absence of correlation between built-in electric dipole moment and quantum Stark effect in InAs/GaAs self-assembled quantum dots

    Full text link
    We report significant deviations from the usual quadratic dependence of the ground state interband transition energy on applied electric fields in InAs/GaAs self-assembled quantum dots. In particular, we show that conventional second-order perturbation theory fails to correctly describe the Stark shift for electric field below F=10F = 10 kV/cm in high dots. Eight-band kp{\bf k}\cdot{\bf p} calculations demonstrate this effect is predominantly due to the three-dimensional strain field distribution which for various dot shapes and stoichiometric compositions drastically affects the hole ground state. Our conclusions are supported by two independent experiments.Comment: 4 pages, 4 figure

    Anomalous quantum confined Stark effects in stacked InAs/GaAs self-assembled quantum dots

    Full text link
    Vertically stacked and coupled InAs/GaAs self-assembled quantum dots (SADs) are predicted to exhibit a strong non-parabolic dependence of the interband transition energy on the electric field, which is not encountered in single SAD structures nor in other types of quantum structures. Our study based on an eight-band strain-dependent kp{\bf k}\cdot{\bf p} Hamiltonian indicates that this anomalous quantum confined Stark effect is caused by the three-dimensional strain field distribution which influences drastically the hole states in the stacked SAD structures.Comment: 4 pages, 4 figure

    Heterogeneous aging in spin glasses

    Full text link
    We introduce a set of theoretical ideas that form the basis for an analytical framework capable of describing nonequilibrium dynamics in glassy systems. We test the resulting scenario by comparing its predictions with numerical simulations of short-range spin glasses. Local fluctuations and responses are shown to be connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. Scaling relationships are uncovered for the slow evolution of heterogeneities at all time scales.Comment: Substantially reorganized to improve clarity of exposition. Accepted for publication in Physical Review Letters. 5 pages, 4 figure

    Thermal noise properties of two aging materials

    Full text link
    In this lecture we review several aspects of the thermal noise properties in two aging materials: a polymer and a colloidal glass. The measurements have been performed after a quench for the polymer and during the transition from a fluid-like to a solid-like state for the gel. Two kind of noise has been measured: the electrical noise and the mechanical noise. For both materials we have observed that the electric noise is characterized by a strong intermittency, which induces a large violation of the Fluctuation Dissipation Theorem (FDT) during the aging time, and may persist for several hours at low frequency. The statistics of these intermittent signals and their dependance on the quench speed for the polymer or on sample concentration for the gel are studied. The results are in a qualitative agreement with recent models of aging, that predict an intermittent dynamics. For the mechanical noise the results are unclear. In the polymer the mechanical thermal noise is still intermittent whereas for the gel the violation of FDT, if it exists, is extremely small.Comment: to be published in the Proceedings of the XIX Sitges Conference on ''Jammming, Yielding and Irreversible Deformation in Condensed Matter'', M.-C.Miguel and M. Rubi eds.,Springer Verlag, Berli

    Micellization of Sliding Polymer Surfactants

    Full text link
    Following up a recent paper on grafted sliding polymer layers (Macromolecules 2005, 38, 1434-1441), we investigated the influence of the sliding degree of freedom on the self-assembly of sliding polymeric surfactants that can be obtained by complexation of polymers with cyclodextrins. In contrast to the micelles of quenched block copolymer surfactants, the free energy of micelles of sliding surfactants can have two minima: the first corresponding to small micelles with symmetric arm lengths, and the second corresponding to large micelles with asymmetric arm lengths. The relative sizes and concentrations of small and large micelles in the solution depend on the molecular parameters of the system. The appearance of small micelles drastically reduces the kinetic barrier signifying the fast formation of equilibrium micelles.Comment: Submitted to Macromolecule

    Sources of UHECRs in view of the TUS and JEM-EUSO experiments

    Full text link
    The origin of ultra-high-energy cosmic rays (UHECRs) is one of the most intriguing problems of modern cosmic ray physics. We briefly review the main astrophysical models of their origin and the forthcoming orbital experiments TUS and JEM-EUSO, and discuss how the new data can help one solve the long-standing puzzle.Comment: 4 pages; prepared for ECRS-2012 (http://ecrs2012.sinp.msu.ru/); v2: a reference adde

    Properties of electrons scattered on a strong plane electromagnetic wave with a linear polarization: classical treatment

    Get PDF
    The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. There is a reflection law for these electrons that relates the incident and the reflection angles and is independent of any parameters.Comment: 12 pp, 3 fig
    corecore