75 research outputs found
A common origin of complex life cycles in parasitic flatworms: evidence from the complete mitochondrial genome of Microcotyle sebastis (Monogenea: Platyhelminthes)
BACKGROUND: The parasitic Platyhelminthes (Neodermata) contains three parasitic groups of flatworms, each having a unique morphology, and life style: Monogenea (primarily ectoparasitic), Trematoda (endoparasitic flukes), and Cestoda (endoparasitic tapeworms). The evolutionary origin of complex life cyles (multiple obligate hosts, as found in Trematoda and Cestoda) and of endo-/ecto-parasitism in these groups is still under debate and these questions can be resolved, only if the phylogenetic position of the Monogenea within the Neodermata clade is correctly estimated. RESULTS: To test the interrelationships of the major parasitic flatworm groups, we estimated the phylogeny of the Neodermata using complete available mitochondrial genome sequences and a newly characterized sequence of a polyopisthocotylean monogenean Microcotyle sebastis. Comparisons of inferred amino acid sequences and gene arrangement patterns with other published flatworm mtDNAs indicate Monogenea are sister group to a clade of Trematoda+Cestoda. CONCLUSION: Results confirm that vertebrates were the first host for stem group neodermatans and that the addition of a second, invertebrate, host was a single event occurring in the Trematoda+Cestoda lineage. In other words, the move from direct life cycles with one host to complex life cycles with multiple hosts was a single evolutionary event. In association with the evolution of life cycle patterns, our result supports the hypothesis that the most recent common ancestor of the Neodermata giving rise to the Monogenea adopted vertebrate ectoparasitism as its initial life cycle pattern and that the intermediate hosts of the Trematoda (molluscs) and Cestoda (crustaceans) were subsequently added into the endoparasitic life cycles of the Trematoda+Cestoda clade after the common ancestor of these branched off from the monogenean lineage. Complex life cycles, involving one or more intermediate hosts, arose through the addition of intermediate hosts and not the addition of a vertebrate definitive host. Additional evidence is required from monopisthocotylean monogeneans in order to confirm the monophyly of the group
Molecular Identification of Taenia Tapeworms by Cox1 Gene in Koh Kong, Cambodia
We collected fecal samples from 21 individuals infected with Taenia tapeworms in Koh Kong Province, Cambodia, and performed nucleotide sequencing of the cox1 gene and multiplex PCR on the eggs for DNA differential diagnosis of human Taenia tapeworms. Genomic DNA was extracted from the eggs of a minimum number of 10 isolated from fecal samples. Using oligonucleotide primers Ta7126F, Ts7313F, Tso7466F, and Rev7915, the multiplex PCR assay proved useful for differentially diagnosing Taenia solium, Taenia saginata, and Taenia asiatica based on 706, 629, and 474 bp bands, respectively. All of the Taenia specimens from Kho Kong, Cambodia, were identified as either T. saginata (n=19) or T. solium (n=2) by cox1 sequencing and multiplex PCR
Morphologic and Genetic Identification of Taenia Tapeworms in Tanzania and DNA Genotyping of Taenia solium
Species identification of Taenia tapeworms was performed using morphologic observations and multiplex PCR and DNA sequencing of the mitochondrial cox1 gene. In 2008 and 2009, a total of 1,057 fecal samples were collected from residents of Kongwa district of Dodoma region, Tanzania, and examined microscopically for helminth eggs and proglottids. Of these, 4 Taenia egg positive cases were identified, and the eggs were subjected to DNA analysis. Several proglottids of Taenia solium were recovered from 1 of the 4 cases. This established that the species were T. solium (n=1) and T. saginata (n=3). One further T. solium specimen was found among 128 fecal samples collected from Mbulu district in Arusha, and this had an intact strobila with the scolex. Phylegenetic analysis of the mtDNA cox1 gene sequences of these 5 isolates showed that T. saginata was basal to the T. solium clade. The mitochondrial cox1 gene sequences of 3 of these Tanzanian isolates showed 99% similarity to T. saginata, and the other 2 isolates showed 100% similarity to T. solium. The present study has shown that Taenia tapeworms are endemic in Kongwa district of Tanzania, as well as in a previously identified Mbulu district. Both T. solium isolates were found to have an "African/Latin American" genotype (cox1)
Echinostoma ilocanum Infection in Oddar Meanchey Province, Cambodia
Fecal examinations using the Kato Katz technique were performed on a total of 1,287 villagers (945 students and 342 general inhabitants) of Oddar Meanchey Province, Cambodia in May 2007 and November 2009. The overall intestinal helminth egg positive rate was 23.9%, and the most prevalent helminth species was hookworms (21.6%). Other helminth eggs detected included echinostomes (1.0%), Enterobius vermicularis (0.8%), small trematode eggs (0.7%), which may include Opisthorchis viverrini and Haplorchis spp., and Hymenolepis nana (0.4%). In order to recover adult echinostomes, we treated 2 patients with 10-15 mg/kg praziquantel and purged. Total 14 adult echinostomes, 1 and 13 worms from each patient, were collected. The echinostomes characteristically had 49-51 collar spines and 2 round or slightly lobated testes. They were identified as Echinostoma ilocanum (Garrison, 1908) Odhner, 1911. So far as literature are concerned, this is the first record on the discovery of human E. ilocanum infection in Cambodia
Echinostoma revolutum Infection in Children, Pursat Province, Cambodia
To determine the prevalence of helminthic infections in Pursat Province, Cambodia, we tested fecal specimens from 471 children, 10–14 years of age, in June 2007. The prevalence of infection with echinostome flukes ranged from 7.5% to 22.4% in 4 schools surveyed. Adult worms were identified as Echinostoma revolutum
Prevalence of the Intestinal Flukes Haplorchis taichui and H. yokogawai in a Mountainous Area of Phongsaly Province, Lao PDR
Phongsaly Province, located in the northernmost area of Lao PDR, was previously suggested to be endemic for the liver fluke Opisthorchis viverrini infection. To confirm, or rule out, this suggestion, the Phonxay village in the Khoua District, Phongsaly Province, was selected for a survey. Ten volunteers (8 men and 2 women aged 31-57 years) who consumed raw freshwater fish and had gastrointestinal troubles were treated with a single dose of praziquantel (40 mg/kg) and pyrantel pamoate (10 mg/kg) and purged with magnesium sulfate to recover any worm parasites. Eight of the 10 volunteers expelled 1 or more species of trematodes, nematodes, or cestodes (worm positive rate; 80%). The worms were morphologically identified as H. taichui (861 worms from 8 people), H. yokogawai (59 from 6 people), Phaneropsolus bonnei (1 from 1 person), Trichostrongylus sp. (2 from 2 people), Ascaris lumbricoides (2 from 1 person), Enterobius vermicularis (11 from 3 people), and Taenia saginata (1 strobila with scolex from 1 person). The results indicate that the mountainous area of Phongsaly Province, Lao PDR, is not endemic for the liver fluke but endemic for intestinal flukes, in particular, Haplorchis taichui and H. yokogawai
High Prevalence of Opisthorchis viverrini Infection in a Riparian Population in Takeo Province, Cambodia
Opisthorchis viverrini infection was found to be highly prevalent in 3 riverside villages (Ang Svay Chek A, B, and C) of the Prey Kabas District, Takeo Province. This area is located in the southern part of Cambodia, where the recovery of adult O. viverrini worms was recently reported. From May 2006 until May 2010, fecal examinations were performed on a total of 1,799 villagers using the Kato-Katz thick smear technique. In the 3 villages, the overall positive rate for helminth eggs ranged from 51.7 to 59.0% (av. 57.4%), and the percentage positive for O. viverrini was 46.4-50.6% (47.5%). Other helminths detected included hookworms (13.2%), echinostomes (2.9%), Trichuris trichiura (1.3%), Ascaris lumbricoides (0.6%), and Taenia spp. (0.06%). The prevalence of O. viverrini eggs appeared to reflect a lower infection in younger individuals (<20 years) than in the adult population (>20 years). Men (50.4%) revealed a significantly higher (P=0.02) prevalence than women (44.3%). The Ang Svay Chek villages of the Prey Kabas District, Takeo Province, Cambodia have been confirmed to be a highly endemic area for human O. viverrini infection
Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences
<p>Abstract</p> <p>Background</p> <p>The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. Ultimately, topological incongruence (and congruence) between nuclear rDNA and mtDNA phylogenetic hypotheses will need to be tested relative to additional independent loci that provide appropriate levels of resolution.</p> <p>Results</p> <p>For this comparative phylogenetic study, we determined the complete mitochondrial genome sequences of three nematode species, <it>Cucullanus robustus </it>(13,972 bp) representing Ascaridida, <it>Wellcomia </it><it>siamensis </it>(14,128 bp) representing Oxyurida, and <it>Heliconema longissimum </it>(13,610 bp) representing Spirurida. These new sequences were used along with 33 published nematode mitochondrial genomes to investigate phylogenetic relationships among chromadorean orders. Phylogenetic analyses of both nucleotide and amino acid sequence datasets support the hypothesis that Ascaridida is nested within Rhabditida. The position of Oxyurida within Chromadorea varies among analyses; in most analyses this order is sister to the Ascaridida plus Rhabditida clade, with representative Spirurida forming a distinct clade, however, in one case Oxyurida is sister to Spirurida. Ascaridida, Oxyurida, and Spirurida (the sampled clade III taxa) do not form a monophyletic group based on complete mitochondrial DNA sequences. Tree topology tests revealed that constraining clade III taxa to be monophyletic, given the mtDNA datasets analyzed, was a significantly worse result.</p> <p>Conclusion</p> <p>The phylogenetic hypotheses from comparative analysis of the complete mitochondrial genome data (analysis of nucleotide and amino acid datasets, and nucleotide data excluding 3<sup>rd </sup>positions) indicates that nematodes representing Ascaridida, Oxyurida and Spirurida do not share an exclusive most recent common ancestor, in contrast to published results based on nuclear ribosomal DNA. Overall, mtDNA genome data provides reliable support for nematode relationships that often corroborates findings based on nuclear rDNA. It is anticipated that additional taxonomic sampling will provide a wealth of information on mitochondrial genome evolution and sequence data for developing phylogenetic hypotheses for the phylum Nematoda.</p
A Phylogenetic Hypothesis for Species of the Genus \u3ci\u3eTaenia\u3c/i\u3e (Eucestoda: Taeniidae)
Cladistic analysis of a numerical data matrix describing 27 characters for species of Taenia resulted in four most parsimonious phylogenetic trees (174 steps; consistency index = 0.28; homoplasy index = 0.72; retention index = 0.48). Monophyly for Taenia is diagnosed by the metacestode that is either a cysticercus or a form derived from a bladder-like larva; no other unequivocal synapomorphies are evident. Tree structure provides no support for recognition of a diversity of tribes or genera within the Taeniinae: Fimbriotaeniini and Taeniini have no phylogenetic basis. Hydatigera, Fimbriotaenia, Fossor, Monordotaenia, Multiceps, Taeniarhynchus, Tetratirotaenia must be subsumed within Taenia as synonyms. Taenia saginata and Taenia asiatica are sister species and distantly related to Taenia solium. Cospeciation with respect to carnivorous definitive hosts and Taenia appears to be limited. Although felids are putative ancestral hosts, contemporary associations appear to have resulted from extensive host-switching among felids, canids, hyaenids, and others. In contrast, relationships with herbivorous intermediate hosts are indicative of more pervasive coevolution; rodents as intermediate hosts are postulated as ancestral for the Taeniidae, Taenia + Echinococcus. Patterns appear consistent with rapid shifts between phylogenetically unrelated carnivores but among those that historically exploited a common prey resource within communities in specific biogeographic regions
- …