92 research outputs found

    Metabolic Traits and Stroke Risk in Individuals of African Ancestry: Mendelian Randomization Analysis.

    Get PDF
    BACKGROUND AND PURPOSE: Metabolic traits affect ischemic stroke (IS) risk, but the degree to which this varies across different ethnic ancestries is not known. Our aim was to apply Mendelian randomization to investigate the causal effects of type 2 diabetes (T2D) liability and lipid traits on IS risk in African ancestry individuals, and to compare them to estimates obtained in European ancestry individuals. METHODS: For African ancestry individuals, genetic proxies for T2D liability and circulating lipids were obtained from a meta-analysis of the African Partnership for Chronic Disease Research study, the UK Biobank, and the Million Veteran Program (total N=77 061). Genetic association estimates for IS risk were obtained from the Consortium of Minority Population Genome-Wide Association Studies of Stroke (3734 cases and 18 317 controls). For European ancestry individuals, genetic proxies for the same metabolic traits were obtained from Million Veteran Program (lipids N=297 626, T2D N=148 726 cases, and 965 732 controls), and genetic association estimates for IS risk were obtained from the MEGASTROKE study (34 217 cases and 406 111 controls). Random-effects inverse-variance weighted Mendelian randomization was used as the main method, complemented with sensitivity analyses more robust to pleiotropy. RESULTS: Higher genetically proxied T2D liability, LDL-C (low-density lipoprotein cholesterol), total cholesterol and lower genetically proxied HDL-C (high-density lipoprotein cholesterol) were associated with increased risk of IS in African ancestry individuals (odds ratio per doubling the odds of T2D liability [95% CI], 1.09 [1.07-1.11]; per standard-deviation increase in LDL-C, 1.12 [1.04-1.21]; total cholesterol: 1.23 [1.06-1.43]; HDL-C, 0.93 [0.89-0.99]). There was no evidence for differences in these estimates when performing analyses in European ancestry individuals. CONCLUSIONS: Our analyses support a causal effect of T2D liability and lipid traits on IS risk in African ancestry individuals, with Mendelian randomization estimates similar to those obtained in European ancestry individuals

    Diversity in genetic risk of recurrent stroke: a genome-wide association study meta-analysis

    Get PDF
    IntroductionStroke is a leading cause of death and disability worldwide. Recurrent strokes are seven times more lethal than initial ones, with 54% leading to long-term disability. Substantial recurrent stroke risk disparities exist among ancestral groups. Notably, Africans face double the risk and higher fatality rates compared to Europeans. Although genetic studies, particularly GWAS, hold promise for uncovering biological insights into recurrent stroke, they remain underexplored. Our study addresses this gap through meta-analyses of recurrent stroke GWAS, considering specific ancestral groups and a combined approach.MethodsWe utilized four independent study cohorts for African, European, and Combined ancestry recurrent stroke GWAS with genotyping, imputation, and strict quality control. We harmonized recurrent stroke phenotype and effect allele estimates across cohorts. The logistic regression GWAS model was adjusted for age, sex, and principal components. We assessed how well genetic risk of stroke informs recurrent stroke risk using Receiver Operating Characteristic (ROC) curve analysis with the GIGASTROKE Consortium's polygenic risk scores (PRS).ResultsHarmonization included 4,420 participants (818 African ancestry and 3,602 European ancestry) with a recurrent stroke rate of 16.8% [median age 66.9 (59.1, 73.6) years; 56.2% male]. We failed to find genome-wide significant variants (p < 5e−8). However, we found 18 distinct suggestive (p < 5e−6) genetic loci with high biological relevance consistent across African and European ancestries, including PPARGC1B, CCDC3, OPRL1, and MYH11 genes. These genes affect vascular stenosis through constriction and dilation. We also observed an association with SDK1 gene, which has been previous linked with hypertension in Nigerian and Japanese populations). ROC analysis showed poor performance of the ischemic stroke PRS in discriminating recurrent stroke status (area under the curve = 0.48).DiscussionOur study revealed genetic associations with recurrent stroke not previously associated with incident ischemic stroke. We found suggestive associations in genes previously linked with hypertension. We also determined that knowing the genetic risk of incident stroke does currently not inform recurrent stroke risk. We urgently need more studies to understand better the overlap or lack thereof between incident and recurrent stroke biology

    DNA methylation analyses identify an intronic ZDHHC6 locus associated with time to recurrent stroke in the Vitamin Intervention for Stroke Prevention (VISP) clinical trial

    Get PDF
    Aberrant DNA methylation profiles have been implicated in numerous cardiovascular diseases; however, few studies have investigated how these epigenetic modifications contribute to stroke recurrence. The aim of this study was to identify methylation loci associated with the time to recurrent cerebro- and cardiovascular events in individuals of European and African descent. DNA methylation profiles were generated for 180 individuals from the Vitamin Intervention for Stroke Prevention clinical trial using Illumina HumanMethylation 450K BeadChip microarrays, resulting in beta values for 470,871 autosomal CpG sites. Ethnicity-stratified survival analyses were performed using Cox Proportional Hazards regression models for associations between each methylation locus and the time to recurrent stroke or composite vascular event. Results were validated in the Vall d'Hebron University Hospital cohort from Barcelona, Spain. Network analyses of the methylation loci were generated using weighted gene coexpression network analysis. Primary analysis identified four significant loci, cg04059318, ch.2.81927627R, cg03584380, and cg24875416, associated with time to recurrent stroke. Secondary analysis identified three loci, cg00076998, cg16758041, and cg02365967, associated with time to composite vascular endpoint. Locus cg03584380, which is located in an intron of ZDHHC6, was replicated in the Vall d'Hebron University Hospital cohort. The results from this study implicate the degree of methylation at cg03584380 is associated with the time of recurrence for stroke or composite vascular events across two ethnically diverse groups. Furthermore, modules of loci were associated with clinical traits and blood biomarkers including previous number of strokes, prothrombin fragments 1 + 2, thrombomodulin, thrombin-antithrombin complex, triglyceride levels, and tissue plasminogen activator. Ultimately, these loci could serve as potential epigenetic biomarkers that could identify at-risk individuals in recurrence-prone populations.Supported through Academic Library Services’ PLOS Institutional Account Progra

    Genetic variants and functional pathways associated with resilience to Alzheimer\u27s disease.

    Get PDF
    Approximately 30% of older adults exhibit the neuropathological features of Alzheimer\u27s disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer\u27s disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values \u3c 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values \u3c 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer\u27s disease (P-values \u3e 0.42) nor associated with APOE (P-values \u3e 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer\u27s disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets

    Sex differences in the genetic architecture of cognitive resilience to Alzheimer\u27s disease.

    Get PDF
    Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer\u27s disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer\u27s disease neuropathology may uncover novel therapeutic targets to treat Alzheimer\u27s disease. It is well established that there are sex differences in response to Alzheimer\u27s disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, β (females) = 0.08, P (females) = 5.76 × 10-09, β (males) = -0.01, P(males) = 0.70, β (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer\u27s disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer\u27s disease may be personalized based on their biological sex and genetic context

    The uncoupling protein 1 gene, UCP1, is expressed in mammalian islet cells and associated with acute insulin response to glucose in African American families from the IRAS Family Study

    Get PDF
    BACKGROUND: Variants of uncoupling protein genes UCP1 and UCP2 have been associated with a range of traits. We wished to evaluate contributions of known UCP1 and UCP2 variants to metabolic traits in the Insulin Resistance and Atherosclerosis (IRAS) Family Study. METHODS: We genotyped five promoter or coding single nucleotide polymorphisms (SNPs) in 239 African American (AA) participants and 583 Hispanic participants from San Antonio (SA) and San Luis Valley. Generalized estimating equations using a sandwich estimator of the variance and exchangeable correlation to account for familial correlation were computed for the test of genotypic association, and dominant, additive and recessive models. Tests were adjusted for age, gender and BMI (glucose homeostasis and lipid traits), or age and gender (obesity traits), and empirical P-values estimated using a gene dropping approach. RESULTS: UCP1 A-3826G was associated with AIR(g )in AA (P = 0.006) and approached significance in Hispanic families (P = 0.054); and with HDL-C levels in SA families (P = 0.0004). Although UCP1 expression is reported to be restricted to adipose tissue, RT-PCR indicated that UCP1 is expressed in human pancreas and MIN-6 cells, and immunohistochemistry demonstrated co-localization of UCP1 protein with insulin in human islets. UCP2 A55V was associated with waist circumference (P = 0.045) in AA, and BMI in SA (P = 0.018); and UCP2 G-866A with waist-to-hip ratio in AA (P = 0.016). CONCLUSION: This study suggests a functional variant of UCP1 contributes to the variance of AIR(g )in an AA population; the plausibility of this unexpected association is supported by the novel finding that UCP1 is expressed in islets

    Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms

    Get PDF
    Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin

    Proceedings of the Sixth Caldwell Conference, St. Catherines Island, Georgia, May 20-22, 2011.

    Get PDF
    494 pages : illustrations (some color), maps (some color) ; 26 cm. Conference sponsored by the American Museum of Natural History and the St. Catherines Island Foundation.Although this volume covers a broad range of temporal and methodological topics, the chapters are unified by a geographic focus on the archaeology of the Georgia Bight. The various research projects span multiple time periods (including Archaic, Woodland, Mississippian, and contact periods) and many incorporate specialized analyses (such as petrographic point counting, shallow geophysics, and so forth). The 26 contributors conducting this cutting-edge work represent the full spectrum of the archaeological community, including museum, academic, student, and contract archaeologists. Despite the diversity in professional and theoretical backgrounds, temporal periods examined, and methodological approaches pursued, the volume is unified by four distinct, yet interrelated, themes. Contributions in Part I discuss a range of analytical approaches for understanding time, exchange, and site layout. Chapters in Part II model coastal landscapes from both environmental and social perspectives. The third section addresses site-specific studies of late prehistoric architecture and village layout throughout the Georgia Bight. Part IV presents new and ongoing research into the Spanish mission period of this area. These papers were initially presented and discussed at the Sixth Caldwell Conference, cosponsored by the American Museum of Natural History and the St. Catherines Island Foundation, held on St. Catherines Island, Georgia, May 20-22, 2011. TABLE OF CONTENTS: Revising the ¹⁴C reservoir correction for St. Catherines Island, Georgia / David Hurst Thomas, Matthew C. Sanger, and Royce H. Hayes -- An assessment of coastal faunal data from Georgia and northeast Florida / Alexandra L. Parsons and Rochelle A. Marrinan -- Archaeological geophysics on St. Catherines Island : beyond prospection / Ginessa J. Mahar -- Paste variability and clay resource utilization at the Fountain of Youth site, St. Augustine, 8SJ31 / Ann S. Cordell and Kathleen A. Deagan -- Petrographic analysis of pottery and clay samples from the Georgia Bight : evidence of regional social interactions / Neill J. Wallis and Ann S. Cordell -- Past shorelines of the Georgia coast / Chester B. DePratter and Victor D. Thompson -- Coastal landscapes and their relationship to human settlement on the Georgia coast / John A. Turck and Clark R. Alexander -- The role of small islands in foraging economies of St. Catherines Island / Matthew F. Napolitano -- Ever-shifting landscapes : tracking changing spatial usage along coastal Georgia / Matthew C. Sanger -- A paleoeconomic model of the Georgia coast (4500-300 B.P.) / Thomas G. Whitley -- A survey of Irene phase architecture on the Georgia coast / Deborah A. Keene and Ervan G. Garrison -- Life and death on the Ogeechee : a view from the Redbird Creek village / Ryan O. Sipe -- Mission San Joseph de Sapala : mission-period archaeological research on Sapelo Island / Richard W. Jefferies and Christopher R. Moore -- The Guale landscape of Mission Santa Catalina de Guale : 30 years of geophysics at a Spanish colonial mission / Elliot H. Blair -- Missions San Buenaventura and Santa Cruz de Guadalquini : retreat from the Georgia coast / Keith H. Ashley, Vicki L. Rolland, and Robert L. Thunen -- Entangling events : the Guale coastal landscape and the Spanish missions / Victor D. Thompson, John A. Turck, Amanda D. Roberts Thompson, and Chester B. DePratter -- Island and coastal archaeology on the Georgia Bight / Scott M. Fitzpatrick
    corecore