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Introduction: Stroke is a leading cause of death and disability worldwide.

Recurrent strokes are seven times more lethal than initial ones, with 54% leading

to long-term disability. Substantial recurrent stroke risk disparities exist among

ancestral groups. Notably, Africans face double the risk and higher fatality rates

compared to Europeans. Although genetic studies, particularly GWAS, hold

promise for uncovering biological insights into recurrent stroke, they remain

underexplored. Our study addresses this gap throughmeta-analyses of recurrent

stroke GWAS, considering specific ancestral groups and a combined approach.

Methods: We utilized four independent study cohorts for African, European,

and Combined ancestry recurrent stroke GWAS with genotyping, imputation,

and strict quality control. We harmonized recurrent stroke phenotype and

e�ect allele estimates across cohorts. The logistic regression GWAS model

was adjusted for age, sex, and principal components. We assessed how well

genetic risk of stroke informs recurrent stroke risk using Receiver Operating

Characteristic (ROC) curve analysis with the GIGASTROKE Consortium’s

polygenic risk scores (PRS).

Results: Harmonization included 4,420 participants (818 African ancestry and

3,602 European ancestry) with a recurrent stroke rate of 16.8% [median age 66.9

(59.1, 73.6) years; 56.2%male]. We failed to find genome-wide significant variants

(p < 5e−8). However, we found 18 distinct suggestive (p < 5e−6) genetic loci

with high biological relevance consistent across African and European ancestries,

including PPARGC1B, CCDC3, OPRL1, and MYH11 genes. These genes a�ect

vascular stenosis through constriction and dilation. We also observed an

association with SDK1 gene, which has been previous linked with hypertension

in Nigerian and Japanese populations). ROC analysis showed poor performance
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of the ischemic stroke PRS in discriminating recurrent stroke status (area under

the curve = 0.48).

Discussion: Our study revealed genetic associations with recurrent stroke

not previously associated with incident ischemic stroke. We found suggestive

associations in genes previously linked with hypertension. We also determined

that knowing the genetic risk of incident stroke does currently not inform

recurrent stroke risk. We urgently need more studies to understand better the

overlap or lack thereof between incident and recurrent stroke biology.

KEYWORDS

recurrent stroke, genetic risk, diversity, GWAS, African ancestry, meta-analysis,

polygenic risk score

1 Introduction

Stroke is a leading cause of death and disability worldwide,

with presentations and mechanisms of action that are quite

heterogeneous. In the United States, the majority, nearly 87%,

of the ∼800,000 strokes that occur each year are ischemic,

and a substantial number, roughly 185,000, are recurrent attacks

(Benjamin et al., 2019).

Compared to first strokes, recurrent strokes are more deadly

and more likely to cause disability. The 30-day case fatality for the

first stroke and recurrent stroke is 2 and 14%, respectively (Jong

et al., 2004). Likewise, 54% of individuals suffering a recurrent

stroke will be disabled (Hankey et al., 2007). In addition to

geographical differences in stroke incidence and prevalence, stroke

disparities by race-ethnicity are alarming. Stroke has one of the

starkest health disparities in the United States. African Americans

(AA) endure a nearly 2-fold greater risk of stroke than European

Americans (EA; Howard et al., 2016a). AA are also 2–3 times

more likely to die from stroke (Howard et al., 2016b). Even among

individuals who survive an initial stroke, AA have a much greater

risk of stroke recurrence (Sheinart et al., 1998; Park and Ovbiagele,

2016). Considering these facts, it is imperative to investigate the role

of genetics in stroke recurrence.

While genome-wide association studies (GWAS) have

identified loci and pathways associated with ischemic stroke,

such studies on recurrent stroke are limited. It remains unknown

what impact genetic ancestry may have on an individual’s risk

of recurrent stroke. To address these gaps, we conducted a

meta-analysis of GWAS data from four independent cohorts

to explore general and ancestry-specific genetic contributors

to recurrent stroke. Our findings aim to uncover novel genetic

variants causally linked to recurrent stroke mechanisms, including

indirect mechanisms. Ancestry-specific meta-analyses may provide

insights into the genetic factors contributing to recurrent stroke

risk disparities between African and European ancestral groups.

2 Materials and methods

2.1 Study design

This study is a meta-analysis of recurrent stroke genome-

wide association study summary statistics from four independent

cohorts. Each study included adults aged 18 years or older that had

an ischemic stroke that qualified them for study enrollment. The

participants were followed until recurrent stroke event or length

of the cohort-specific observable period. Each cohort followed

participants prospectively. Below, we discuss the cohorts and

further detail can be found in Supplementary material 1.

2.2 Cohorts

We utilized the following four independent cohorts for this

study because of their prospective observation of stroke survivors

and their incidence of recurrent stroke events over time: the

Australian Stroke Genetics Collaboration (ASGC; Lemmens et al.,

2010), the Reasons for Geographic and Racial Differences in

Stroke (REGARDS; Howard et al., 2005), the Sahlgrenska Academy

Study on Ischemic Stroke (SAHLSIS; Jood et al., 2005), and the

Vitamin Intervention for Stroke Intervention clinical trial (VISP;

Toole, 2002). Additionally, these cohorts allow the investigation of

ancestry-specific genetic associations of recurrent stroke, African

and European. The REGARDS and VISP cohorts have notable

proportions of African ancestry, while the ASGC and SAHLSIS

cohorts are European.

The Australian data comprises 1,230 ischemic stroke cases

derived from four acute stroke centers in New South Wales,

South Australia and Perth, Western Australia under the banner

of the ASGC. These stroke cases comprised European-ancestry

stroke patients admitted to clinical centers across Australia. Cases

were consecutively recruited from the Neurosciences Department

at Gosford Hospital, Gosford, New South Wales (NSW) and

the Neurology Department at John Hunter Hospital, Newcastle,

NSW between 2003 and 2008. In South Australia, cases were

recruited from the Queen Elizabeth Hospital, Adelaide at the

same time. For Royal Perth Hospital site, this population-based,

longitudinal cohort study sought to determine the age and

sex-specific incidence and case fatality of stroke and included

residents from the Perth metropolitan area who had a stroke

or transient ischemic attack (TIA) between 20 February 1989

and 19 August 1990 (Hankey et al., 2007; Maguire et al.,

2011).

The REGARDS study is a population-based, longitudinal

cohort comprising 30,239 non-Hispanic Black and White

Frontiers in Stroke 02 frontiersin.org

https://doi.org/10.3389/fstro.2024.1338636
https://www.frontiersin.org/journals/stroke
https://www.frontiersin.org


Aldridge et al. 10.3389/fstro.2024.1338636

American adults 45 years or older from the 48 contiguous

United States and the District of Columbia (Howard et al.,

2005). By design, participants were oversampled if they

were Black or if they were residents of the stroke belt. The

purpose of REGARDS is to investigate the reasons why

stroke mortality is higher among Black compared with

White adults and residents of the Southeastern US compared

with other regions. Enrollment took place in 2003–2007,

and participants completed a computer-assisted telephone

interview to collect demographic information, as well as an in-

home visit for blood pressure measurements and collection

of biologic specimens (e.g., blood, urine; Howard et al.,

2005).

The SAHLSIS is a hospital-based, longitudinal cohort study,

which has been described in detail elsewhere (Jood et al.,

2005). In brief, patients with first-ever or recurrent acute

ischemic stroke were consecutively recruited at stroke units in

Western Sweden. Ischemic stroke cases were aged 18–69 years

and were recruited between 1998 and 2011. Ischemic stroke

was defined as an episode of focal brain dysfunction with

acute onset, lasting >24 h, and of presumed vascular cause

with no signs of hemorrhage on neuroimaging. Participants

were excluded if further evaluation showed another etiology

than stroke.

The VISP trial, a randomized double-blinded trial, has

been described previously (Toole, 2002). In summary, the trial

investigated the effect of vitamin supplementation dosage on

the risk of recurrent stroke. The study enrolled participants

with a non-disabling ischemic stroke (mRS ≤ 3) ≥ 72 h before

enrollment. Participants (n = 3,680) were randomized to a high-

dose or low-dose vitamin supplementation arm and reassessed

every 3 months until a recurrent stroke event, but not longer

than 2 years. Ten sites were not approved for genetic studies,

resulting in a subset of 2,100 genotyped participants. There

was no intervention effect between treatment groups, thus

we considered participants from each treatment group as the

same cohort.

2.3 Genotyping and quality control

Each cohort underwent genotyping and strict quality control

procedures. Supplementary material 1 details the methods by

cohort. The genotyping arrays utilized by cohort were the

following: ASGC utilized the Illumina HumanHap610-Quad array.

REGARDS used the Illumina Infinium Multi-Ethnic AMR/AFR

Extended BeadChip arrays. The SAHLSIS performed genotyping

on the Illumin Human OmniExpressExome BeadChip version

1.0 or 1.1, while VISP used the Illumina HumanOmni1-Quad-

v1 array.

The cohorts had their genotype data referenced to varying

genome builds. We utilized the UCSC LiftOver software (Lee

et al., 2022) to bring the ASGC, SAHLSIS, and VISP cohorts to

the genome assembly GRChr38. We also harmonized the beta

coefficients so that the effect allele remained consistent among

the cohorts.

2.4 Data harmonization

2.4.1 Phenotyping
Recurrent stroke phenotyping definitions by cohort are

described here:

ASGC defined stroke by WHO criteria as a sudden focal

neurologic deficit of vascular origin, lasting more than 24 h and

confirmed by imaging such as computerized tomography

(CT) and/or magnetic resonance imaging (MRI) brain

scan. Other investigative tests such as electrocardiogram,

carotid doppler and trans-esophageal echocardiogram were

conducted to define ischemic stroke mechanism as clinically

appropriate. Cases were excluded from participation if aged

<18 years, diagnosed with hemorrhagic stroke or transient

ischemic attack rather than ischemic stroke, or were unable

to undergo baseline brain imaging. A subset of stroke cases

phenotypically identified as not “first ever stroke,” as recurrent

and were derived from this data and are included in the

current study.

REGARDS included all Black and White participants with

available genotyping and informed consent. Individuals were

excluded if they self-reported a history of stroke or lacked

stroke follow-up information. Recurrent stroke cases are defined

as participants with a primary incident ischemic stroke plus a

secondary ischemic stroke during REGARDS follow-up.

For the SAHLSIS study to obtain data on non-fatal recurrent

strokes, the National Hospital Discharge Registry was used.

Sweden has a publicly financed healthcare system that offers

healthcare to all citizens at a comparatively low cost, and all

hospitals must report discharge diagnoses of all patients to this

registry. The registry thus contains almost complete data (99%)

on dates and codes for hospital discharge diagnoses and surgical

procedures. All stroke diagnoses were confirmed by reviewing

the corresponding medical record as described (Pedersen et al.,

2016). When the medical record could not be found (in about

15 % of the cases), the event was still registered if it was

the main diagnosis. Information on the cause of death was

obtained from the Swedish Cause of Death Register, which is

based on the International Classification of Diseases 10th Revision

(ICD10). The medical records within 6 months before death were

reviewed, both for participants who died in the hospital and

for participants who died at home as described (Pedersen et al.,

2016).

Recurrent stroke in VISP was defined as an incident

stroke occurring after trial randomization and before the

2-year trial endpoint, which was previously described in

great detail (Toole, 2002). In summary, recurrent stroke

was diagnosed only with evidence of sudden onset of

focal neurologic deficit lasting at least 24 h accompanied

by an increased NIHSS score in a brain area that was

previously normal. Determination of recurrent stroke status

was done by a local neurologist and two external review

committee neurologists.

For consistency, we defined recurrent stroke as an ischemic or

hemorrhagic stroke that occurred after the “index” or qualifying

ischemic stroke for study enrollment among the cohorts.
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TABLE 1 Demographic characteristics by cohort.

Cohort ASGC
(n = 580)

REGARDS
(n = 926)

SAHLSIS
(n = 931)

VISP
(n = 1,983)

Total
(n = 4,420)

Recurrent stroke 168 (29%) 124 (13%) 146 (16%) 182 (8.7%) 620 (16.8%)

Age in years 76 (66, 82) 68 (62, 75) 58 (50, 64) 68 (60, 75) 66.9 (59.1, 73.6)

Male 262 (45%) 447 (48%) 596 (64%) 1,335 (64%) 660 (56.2%)

Ancestry

African N (%) - 560 (60%) - 258 (13%) 818

European N (%) 580 (100%) 366 (40%) 931 (100%) 1,725 (87%) 3,602

2.5 Statistical plan

2.5.1 Genome-wide association studies
We performed African and European ancestry-stratified

GWAS in the REGARDS and VISP cohorts due to the large

proportions of these ancestries. Next, we meta-analyzed the

REGARDS and VISP African ancestry GWAS summary statistics.

We repeated this for European ancestry by adding the primarily

European ASGC and SAHLSIS cohorts. Lastly, we performed a

combined ancestry GWAS, including ASGC, REGARDS, SAHLSIS,

and VISP. Each GWAS followed the same logistic regression model

with Recurrent Stroke status as the response variable adjusting for

age in years, sex, and the first 10 principal components. Because

VISP was a clinical trial, we added the treatment arm to its

respective models to account for possible confounding effects of

vitamin supplementation.

2.5.2 Meta-analysis
We utilized the “metafor” R package (Viechtbauer, 2010) to

apply an inverse-variance weighted meta-analysis regression to the

summary statistics from each ancestry type. The custom R script

first performed the fixed effects method and calculated the I2-value.

If the I2-value exceeded 50%, the script performed the same meta-

analysis regression with the “REML” method for mixed-effect and

the test parameter “knha.” The “knha” test is the Knapp-Hartung

method, which applies an adjustment to the standard errors to

account for uncertainty due to heterogeneity in the estimates. Due

to the multiple hypothesis tests, we used a Bonferroni Correction

set at two thresholds, genome-wide suggestive (p < 5e−6) and

significant (p < 5e−8).

2.5.3 Gene ontology enrichment and pathway
analyses

We utilized the PANTHER classification system and software

PANTHER18.0 (Thomas et al., 2022) to perform GO enrichment

analysis for biological pathways in Homo sapiens using Fisher’s

Exact test and a False Discovery Rate (FDR) adjustment (Mi

and Thomas, 2009). We also performed a PANTHER Pathways

analysis using the same test and correction parameters (Mi et al.,

2019).

2.5.4 Integration of ischemic stroke polygenic
risk scores

Much discussion surrounds the genetic risk of first-ever

ischemic risk as a continued causal vector for the recurrent stroke

phenotype. To help determine if the recurrent stroke meta-analyses

reflect genetically determined ischemic stroke risk, we utilized

the GIGAStroke consortium’s polygenetic risk scores (PRS) for

European ancestry (Mishra et al., 2022). We calculated scores

within the entire VISP cohort (n= 2,100) and performed a Receiver

Operating Characteristic (ROC) Curve analysis.

3 Results

3.1 Cohort demographics

All cohorts combined provide 4,420 stroke survivors for

analysis with notable heterogeneity in recurrent stroke rates

ranging from 8.6 to 29% (Table 1). Age differed similarly, with the

SAHLSIS cohort having a median age of 58 compared to 76 years in

the AUST cohort.

3.2 GWAS meta-analyses

Figure 1 shows the Manhattan plots of each Ancestry meta-

analysis GWAS. The results of the ancestry-specific meta-analyses

did not show any genomic inflation among the GWAS meta-

analyses (Figure 2).

3.2.1 African ancestry
The REGARDS and VISP African ancestry cohorts (n = 818)

had 5,574,354 SNPs overlap. None of the genetic variants reached

genome-wide significance. Nine reached suggestive significance (p

< 5e−6), with some foundwithin theADGRD1 (protein encoding),

PPL (protein encoding), and LINC01915 (long-coding RNA) genes

(Supplementary material 2).

3.2.2 European ancestry
The European ancestry meta-analysis consisted of the ASGC,

REGARDS, SAHLSIS, and VISP cohorts (n = 3,602), with
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FIGURE 1

Ancestry-specific genome-wide association study (GWAS) meta-analyses. (A) Shows the genome-wide associations of recurrent stroke in individuals

with African ancestry. (B) Shows the genome-wide associations of recurrent stroke in individuals with European ancestry, while (C) is the Combined

ancestry GWAS meta-analysis.

6,140,939 SNPs overlapping at least two cohorts. Seventy-

one SNPs reached suggestive associations (p < 5e−6) with

a strong locus within the SDK1 (protein encoding) gene

(Supplementary material 2). There were other associations with the

RDX (protein encoding) gene and GAD3P pseudogene.

3.2.3 Combined ancestry
The combined ancestry meta-analysis consisted of all cohorts

(n = 4,420) with African and European ancestries, which resulted

in 7,948,212 overlapping SNPs. None of the SNPs reached

genome-wide significance (p < 5e−8). However, 70 SNPs reached

suggestive (p < 5e−6) associations (Supplementary material 2).

Some of the suggestive associations are within the CCDC3, CD59,

CTXND1, DSCC1, GPC5, GSTT4, MAL2, MYH11, OPRL1, PELO-

AS1, PPARGC1B, RN7SL396P, and SDK1 genes.

3.3 GO enrichment and PANTHER pathway
analyses

We selected all of the genes with intron genetic variants from

the combined ancestry meta-analysis with P-values < 5e−6, which

were CCDC3, CD59, CTXND1, DSCC1, GPC5, GSTT4, MAL2,

MYH11, OPRL1, PELO-AS1, PPARGC1B, RN7SL396P, and SDK1.

Both the GO Enrichment and PANTHER Pathway analyses failed

to show statistically significant associations after FDR correction.
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FIGURE 2

No evidence of genomic inflation of recurrent stroke GWAS meta-analysis across ancestries. The QQ plots for each ancestry reflect the observed

–log10 (p-values) of each genetic variant vs. the –log10 (p-values) expected by chance due to multiple hypothesis testing. The lambda value

quantifies the amount of inflation in the observed p-values, a value of 1.10 or less is acceptable.

3.4 Comparison of recurrent stroke
meta-analysis with GIGAStroke

We applied an ROC analysis on the calculated ischemic stroke

PRS from the GIGAStroke consortium which revealed an area

under the curve (AUC) of 0.48; Figure 3, suggesting that knowing

the genetic risk of first-ever ischemic risk predicts recurrent stroke

no better than chance (AUC = 0.5). Because of this result, we

investigated if the PRS score was significantly associated with

recurrent stroke status as a continuous variable and as quartiles

via a Cox proportional hazards model. We set a significant level to

p < 0.05. To avoid Simpson’s paradox (Wagner, 1982), we added

age, sex, and principal components 1–10 as covariates. Neither

the continuous form nor the quartile one showed significant

associations with recurrent stroke status. To note, there was a 97%

overlap between the genetic variants within the GIGAStroke PRS

and the VISP genotyped data.

Next, we investigated if any of the 60 genome-wide significant

variants from GIGAStroke (Mishra et al., 2022), in their

Supplementary Table 4A, were significant in our recurrent stroke

meta-analysis results. None of the variants associated with stroke

risk in GIGAStroke were associated with recurrent stroke in our

study after Bonferroni correction (0.05/60).

Lastly, we investigated the correlation between the GIGAStroke

PRS and known stroke risk factors within the VISP cohort

(Figure 4). The PRS was most strongly associated with age in years

(–R= 0.24; p < 0.001) followed by BMI (R= 0.12; p < 0.001).

4 Discussion

Stroke remains a leading cause of death and long-term disability

worldwide. Strikingly, recurrent strokes are seven times more fatal,

with high rates of disability after survival (Jong et al., 2004).

GWAS offers a strong approach to discovering biological insights

associated with recurrent stroke disease. Plus, performing ancestry-

specific and combined GWAS meta-analyses provides a window

into the genetic determinants of the recurrent stroke risk disparities

between African and European ancestral groups. This study builds

FIGURE 3

Receiver Operating Characteristic (ROC) curve analysis of recurrent

stroke status with GIGASTROKE consortium’s polygenic risk scores

(PRS) of incident ischemic stroke. The figure shows that the incident

ischemic stroke PRS do no better than chance in discriminating

recurrent stroke status. Thus, there is the possibility that the genetic

risk of recurrent stroke has distinct drivers compared to incident

ischemic stroke.

on prior work that investigated candidate gene associations with

recurrent stroke (Fernández-Cadenas et al., 2017).

We did not observe any genome-wide significant associations

with recurrent stroke in any ancestry meta-analysis. However,

we found 18 suggestive (p < 5e−6) genome-wide associated loci

consistent among the African, European, and Combined ancestry

meta-analyses (Supplementary material 2; Figure 5). Some appear

related to stroke risk factors. For example, the PPARGC1B gene

(rs61408734-T locus) is down-regulated in people with type 2

Frontiers in Stroke 06 frontiersin.org

https://doi.org/10.3389/fstro.2024.1338636
https://www.frontiersin.org/journals/stroke
https://www.frontiersin.org


Aldridge et al. 10.3389/fstro.2024.1338636

FIGURE 4

Correlation of GIGAStroke stroke polygenic risk score (PRS) with stroke risk factors in the VISP cohort. The black numbers show Pearson’s correlation

coe�cient among all pairs. The size of the circles and their color reflect the direction and strength of the correlation coe�cient, as seen on the

upper triangle of the figure. PRS is the polygenic risk score for incident stroke, BMI is the body mass index value, and Sys_BP and Dia_BP are systolic

and diastolic blood pressure.

Diabetes Mellitus as well as in pre-diabetes (Patti et al., 2003;

Ling et al., 2004). Additionally, the rs36097625-C locus within

the CCDC3 gene suggests an indirect link with tumor necrosis

factor-alpha (TNF-alpha; Azad et al., 2014), which is a potential

marker for stroke and its recovery (Xue et al., 2022). CCDC3

plays an inhibitory role on TNF-alpha pro-inflammatory responses

in endothelial cells, including vascular tissue (Azad et al., 2014).

Similarly, OPRL1 produces a G protein receptor known as the

ORL1, N/OFQ receptor. This receptor receives the endogenous

neuropeptide nociceptin which directly causes vasodilation in

blood vessels. There is a proposed biological mechanism for

cerebral hypoxia, wherein this receptor’s down-regulation leads

to vasoconstriction and the slowing of cerebrovascular blood

flow (Armstead, 2011). Conversely, the MYH11 gene (rs7205185-

G) produces a smooth muscle myosin protein, which has been

associated with aortic aneurysm/dissections (Zhu et al., 2006) with

a theoretical mechanism of action being hyperplasia leading to an

occlusive vascular pathology. TheDSCC1 gene also has associations

with ascending aortic size and dispensability (Benjamins et al.,

2022). Lastly, the SDK1 gene has particular interest because of its

link with hypertension in two prior GWAS in Nigerians (Tayo et al.,

2009) and Japanese (Oguri et al., 2010) populations.

Other loci appear to be related to the central nervous system.

Interestingly, the same rs7205185-G locus above is also found

in the NDE1 gene, because this gene and MYH11 overlap the

same section of chromosome 16, but on opposite strands. NDE1

function is essential for the development of the cerebral cortex

and may regulate production of neurons (Bakircioglu et al., 2011).

The CD59 gene (rs11032349-T locus) is a potent inhibitor of

the complement membrane attack complex (MAC) with known

expression in human central nervous tissue (Farkas et al., 2002).

The CD59 gene is slightly upregulated in neurons and glial cells

in neuro-degenerative diseases associated with inflammation like

Alzheimer’s disease (McGeer et al., 1991).

The GO Enrichment and PANTHER Pathway analyses failed

to show any biological process associations suggesting that this

study has power limitations. Because of this and the desire

to determine how much genetic risk of ischemic stroke can

explain recurrent stroke risk, we implemented the GIGAStroke

Consortium’s PRS for European ancestry in the VISP cohort.

The European PRS was developed from a primarily European

cohort, but the cohort also had a notable proportion of individuals

with African ancestry (Mishra et al., 2022). This is similar to

the VISP cohort. We found that the PRS did no better than

chance when discriminating recurrent stroke cases vs. control.

By investigating stroke survivors, we are conditioning on the

fact that they had a stroke and are already genetically “at-risk”

for stroke.
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FIGURE 5

Genetic loci associated with recurrent stroke (p < 5e−6) by ancestry. Multiple genetic loci had estimates in the same direction (<0 or >0) between

African and European ancestry genome-wide association studies. These genetic loci are consistent across ancestries.

Because the GIGAStroke consortium’s PRS values correlated

negatively with age and positively with BMI (Figure 4) in the VISP

cohort, there is a measure of validity. Individuals with higher

genetic risk of stroke are more likely have a stroke at a younger

age, and BMI is a well-known stroke risk-factor. This raises the

possibility that genetically determined recurrent stroke risk has

some distinct signatures from incident stroke risk. Therefore,

additional recurrent stroke GWAS must address the question: are

there independent genetic drivers of recurrent stroke compared

to incident stroke? This is an important question to help direct

the field to new therapeutics for mechanism-specific secondary

stroke prevention.

It is important to note that our study with 620/4,420 recurrent

stroke cases among all ancestries is likely an underpowered GWAS

for such a complex and multi-factorial disease. This may have

contributed to the lack of genome-wide significant associations.

Furthermore, our genome-wide suggestive (p < 5e−6) associations

have higher a probability of false positive associations due to

the large number of hypothesis tests. On the other hand, the

majority of the suggestive genetic loci have known biological

mechanisms affecting vascular contractility and stenosis as well as

neuron development or response. The addition of strong biological

relevance provides greater confidence in these suggestive genetic

loci for further investigation.
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5 Conclusion

In conclusion, we discovered several suggestive genetic loci

associated with recurrent stroke from a population of African and

European ancestries. Even though our recurrent stroke GWAS

meta-analyses failed to find genome-wide significant associations,

we observed multiple suggestive loci with high biological relevance.

The application of incident ischemic stroke PRS to the VISP cohort

revealed poor ability to discriminate between recurrent stroke

status. We believe that this suggests that recurrent stroke genetic

drivers are at least in part distinct from incident ischemic stroke.
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