1,166 research outputs found

    Focused laser Doppler velocimeter

    Get PDF
    A system for remotely measuring velocities present in discrete volumes of air is described. A CO2 laser beam is focused by a telescope at such a volume, a focal volume, and within the focusable range, near field, of the telescope. The back scatter, or reflected light, principally from the focal volume, passes back through the telescope and is frequency compared with the original frequency of the laser, and the difference frequency or frequencies represent particle velocities in that focal volume

    Comparison of surface and column measurements of aerosol scattering properties over the western North Atlantic Ocean at Bermuda

    Get PDF
    Light scattering by size-resolved aerosols in near-surface air at Tudor Hill, Bermuda, was measured between January and June 2009. Vertical distributions of aerosol backscattering and column-averaged aerosol optical properties were characterized in parallel with a micro-pulse lidar (MPL) and an automated sun–sky radiometer. Comparisons were made between extensive aerosol parameters in the column, such as the lidar-retrieved extinction at 400 m and the aerosol optical depth (AOD), and scattering was measured with a surface nephelometer. Comparisons were also made for intensive parameters such as the Ångström exponent and calculations using AERONET(Aerosol Robotic Network)-derived aerosol physical parameters (size distribution, index of refraction) and Mie theory, and the ratio of submicron scattering to total scattering for size-segregated nephelometer measurements. In these comparisons the <i>r</i><sup>2</sup> was generally around 0.50. Data were also evaluated based on back trajectories. The correlation between surface scattering and lidar extinction was highest for flows when the surface scattering was dominated by smaller particles and the flow had a longer footprint over land then over the ocean. The correlation of AOD with surface scatter was similar for all flow regimes. There was also no clear dependence of the atmospheric lapse rate, as determined from a nearby radiosonde station, on flow regime. The Ångström exponent for most flow regimes was 0.9–1.0, but for the case of air originating from North America, but with significant time over the ocean, the Ångström exponent was 0.57 ± 0.18. The submicron fraction of aerosol near the surface (<i>R</i><sub>sub-surf</sub>) was significantly greater for the flows from land (0.66 ± 0.11) than for the flows which spent more time over the ocean (0.40 ± 0.05). When comparing <i>R</i><sub>sub-surf</sub> and the column-integrated submicron scattering fraction, <i>R</i><sub>sub-col</sub>, the correlation was similar, <i>r</i><sup>2</sup> = 0.50, but <i>R</i><sub>sub-surf</sub> was generally less than <i>R</i><sub>sub-col</sub>, indicating more large particles contributing to light scattering at the surface, contrary to conditions over continents and for polluted continental transport over the ocean. In general, though, the marginal correlations indicate that the column optical properties are weakly correlated with the surface optical measurements. Thus, if it is desired to associate aerosol chemical/physical properties with their optical properties, it is best to use optical and chemical/physical measurements with both collected at the surface or both collected in the column

    The Spitzer Space Telescope Mission

    Full text link
    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected and the projected cryogenic lifetime is in excess of 5 years. This paper summarizes the on-orbit scientific, technical and operational performance of Spitzer. Subsequent papers in this special issue describe the Spitzer instruments in detail and highlight many of the exciting scientific results obtained during the first six months of the Spitzer mission.Comment: Accepted for publication in the Astrophyscial Journal Supplement Spitzer Special Issue, 22 pages, 3 figures. Higher resolution versions of the figures are available at http://ssc.spitzer.caltech.edu/pubs/journal2004.htm

    ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs

    Get PDF
    This report, issued by the ACVIM Specialty of Cardiology consensus panel, revises guidelines for the diagnosis and treatment of myxomatous mitral valve disease (MMVD, also known as endocardiosis and degenerative or chronic valvular heart disease) in dogs, originally published in 2009. Updates were made to diagnostic, as well as medical, surgical, and dietary treatment recommendations. The strength of these recommendations was based on both the quantity and quality of available evidence supporting diagnostic and therapeutic decisions. Management of MMVD before the onset of clinical signs of heart failure has changed substantially compared with the 2009 guidelines, and new strategies to diagnose and treat advanced heart failure and pulmonary hypertension are reviewed

    Flow climatology for physicochemical properties of dichotomous aerosol over the western North Atlantic Ocean at Bermuda

    Get PDF
    Dichotomous aerosols (nominal super- and sub-μm-diameter size fractions) in sectored on-shore flow were sampled daily from July 2006 through June 2009, at the Tudor Hill Atmospheric Observatory (THAO) on the western coast of Bermuda (32.27° N, 64.87° W) and analyzed for major chemical and physical properties. FLEXPART retroplumes were calculated for each sampling period and aerosol properties were stratified accordingly based on transport from different regions. Transport from the northeastern United States (NEUS) was associated with significantly higher (factors of 2 to 3 based on median values) concentrations of bulk particulate non-sea-salt (nss) SO42-, NO3-, and NH4+ and associated scattering and absorption at 530 nm, relative to transport from Africa (AFR) and the oceanic background. These differences were driven primarily by higher values associated with the sub-μm size fraction under NEUS flow. We estimate that 75(±3)% of the NEUS nss SO42- was anthropogenic in origin, while only 25(±9)% of the AFR nss SO42- was anthropogenic. Integrating over all transport patterns, the contribution of anthropogenic sulfate has dropped 14.6% from the early 1990s. Bulk scattering was highly correlated with bulk nss SO42- in all flow regimes but the corresponding regression slopes varied significantly reflecting differential contributions to total scattering by associated aerosol components. Absorption by super-μm aerosol in transport from the NEUS versus AFR was similar although the super-μm aerosol size fraction accounted for a relatively greater contribution to total absorption in AFR flow. Significantly greater absorption Ångström exponents (AAEs) for AFR flow reflects the wavelength dependence of absorption by mineral aerosols; lower AAEs for NEUS flow is consistent with the dominance of absorption by combustion-derived aerosols. Higher AOD associated with transport from both the NEUS and AFR relative to oceanic background flow results in a top of atmosphere direct radiative forcing on the order of −1.6 to −2.5 W m−2, respectively, showing these aerosols drive cooling. The dominance of transport from the NEUS on an annual basis coupled with the corresponding decreases in anthropogenic nss SO42- aerosols since the early 1990s implies that emission reductions in the US account for a decline in atmospheric cooling over the western North Atlantic Ocean during this period

    Formaldehyde, glyoxal, and methylglyoxal in air and cloudwater at a rural mountain site in central Virginia

    Get PDF
    As part of the Shenandoah Cloud and Photochemistry Experiment (SCAPE), we measured formaldehyde (HCHO), glyoxal (CHOCHO), and methylglyoxal (CH3C(O)CHO) concentrations in air and cloudwater at Pinnacles (elevation 1037 m) in Shenandoah National Park during September 1990. Mean gas‐phase concentrations of HCHO and CHOCHO were 980 and 44 pptv, respectively. The concentration of CH3C(O)CHO rarely exceeded the detection limit of 50 pptv. Mean cloudwater concentrations of HCHO and CHOCHO were 9 and 2 μM, respectively; the mean CH3C(O)CHO concentration was below its detection limit of 0.3 μM. The maximum carbonyl concentrations were observed during stagnation events with high O3, peroxides, and CO. Outside of these events the carbonyls did not correlate significantly with O3, CO, or NOy. Carbonyl concentrations and concentration ratios were consistent with a major source for the carbonyls from isoprene oxidation. Oxidation of CH4 supplies a significant background of HCHO. The carbonyl concentrations were indistinguishable in two size fractions of cloudwater having a cut at d=18 μm. Gas‐ and aqueous‐phase concentrations of HCHO from samples collected during a nighttime cloud event agree with thermodynamic equilibria within a factor of 2. Samples collected during a daytime cloud event show HCHO supersaturation by up to a factor of 4. Positive artifacts in the cloudwater samples due to hydrolysis of hydroxymethylhydroperoxide (HOCH2OOH) could perhaps account for this discrepancy

    Longitudinal Analysis of Quality of Life, Clinical, Radiographic, Echocardiographic, and Laboratory Variables in Dogs with Preclinical Myxomatous Mitral Valve Disease Receiving Pimobendan or Placebo: The EPIC Study

    Get PDF
    Background: Changes in clinical variables associated with the administration of pimobendan to dogs with preclinical myxomatous mitral valve disease (MMVD) and cardiomegaly have not been described. Objectives: To investigate the effect of pimobendan on clinical variables and the relationship between a change in heart size and the time to congestive heart failure (CHF) or cardiac-related death (CRD) in dogs with MMVD and cardiomegaly. To determine whether pimobendan-treated dogs differ from dogs receiving placebo at onset of CHF. Animals: Three hundred and fifty-four dogs with MMVD and cardiomegaly. Materials and Methods: Prospective, blinded study with dogs randomized (ratio 1:1) to pimobendan (0.4-0.6 mg/kg/d) or placebo. Clinical, laboratory, and heart-size variables in both groups were measured and compared at different time points (day 35 and onset of CHF) and over the study duration. Relationships between short-term changes in echocardiographic variables and time to CHF or CRD were explored. Results: At day 35, heart size had reduced in the pimobendan group:median change in (Delta) LVIDDN -0.06 (IQR:-0.15 to + 0.02), P < 0.0001, and LA:Ao -0.08 (IQR:-0.23 to + 0.03), P < 0.0001. Reduction in heart size was associated with increased time to CHF or CRD. Hazard ratio for a 0.1 increase in Delta LVIDDN was 1.26, P = 0.0003. Hazard ratio for a 0.1 increase in Delta LA:Ao was 1.14, P = 0.0002. At onset of CHF, groups were similar. Conclusions and Clinical Importance: Pimobendan treatment reduces heart size. Reduced heart size is associated with improved outcome. At the onset of CHF, dogs treated with pimobendan were indistinguishable from those receiving placebo

    Effect of Pimobendan in Dogs with Preclinical Myxomatous Mitral Valve Disease and Cardiomegaly: The EPIC Study - A Randomized Clinical Trial

    Get PDF
    Background: Pimobendan is effective in treatment of dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve disease (MMVD). Its effect on dogs before the onset of CHF is unknown. Hypothesis/Objectives: Administration of pimobendan (0.4-0.6 mg/kg/d in divided doses) to dogs with increased heart size secondary to preclinical MMVD, not receiving other cardiovascular medications, will delay the onset of signs of CHF, cardiac-related death, or euthanasia. Animals: 360 client-owned dogs with MMVD with left atrial-to-aortic ratio >= 1.6, normalized left ventricular internal diameter in diastole >= 1.7, and vertebral heart sum >10.5. Methods: Prospective, randomized, placebo-controlled, blinded, multicenter clinical trial. Primary outcome variable was time to a composite of the onset of CHF, cardiac-related death, or euthanasia. Results: Median time to primary endpoint was 1228 days (95% CI: 856-NA) in the pimobendan group and 766 days (95% CI: 667-875) in the placebo group (P = .0038). Hazard ratio for the pimobendan group was 0.64 (95% CI: 0.47-0.87) compared with the placebo group. The benefit persisted after adjustment for other variables. Adverse events were not different between treatment groups. Dogs in the pimobendan group lived longer (median survival time was 1059 days (95% CI: 952-NA) in the pimobendan group and 902 days (95% CI: 747-1061) in the placebo group) (P = .012). Conclusions and Clinical Importance: Administration of pimobendan to dogs with MMVD and echocardiographic and radiographic evidence of cardiomegaly results in prolongation of preclinical period and is safe and well tolerated. Prolongation of preclinical period by approximately 15 months represents substantial clinical benefit

    On Orbit Performance of the MIPS Instrument

    Get PDF
    The Multiband Imaging Photometer for Spitzer (MIPS) provides long wavelength capability for the mission, in imaging bands at 24, 70, and 160 microns and measurements of spectral energy distributions between 52 and 100 microns at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The Si:As BIB 24 micron array has excellent photometric properties, and measurements with rms relative errors of 1% or better can be obtained. The two longer wavelength arrays use Ge:Ga detectors with poor photometric stability. However, the use of 1.) a scan mirror to modulate the signals rapidly on these arrays, 2.) a system of on-board stimulators used for a relative calibration approximately every two minutes, and 3.) specialized reduction software result in good photometry with these arrays also, with rms relative errors of less than 10%

    Spitzer observations of a 24 micron shadow: Bok Globule CB190

    Full text link
    We present Spitzer observations of the dark globule CB190 (L771). We observe a roughly circular 24 micron shadow with a 70 arcsec radius. The extinction profile of this shadow matches the profile derived from 2MASS photometry at the outer edges of the globule and reaches a maximum of ~32 visual magnitudes at the center. The corresponding mass of CB190 is ~10 Msun. Our 12CO and 13CO J = 2-1 data over a 10 arcmin X 10 arcmin region centered on the shadow show a temperature ~10 K. The thermal continuum indicates a similar temperature for the dust. The molecular data also show evidence of freezeout onto dust grains. We estimate a distance to CB190 of 400 pc using the spectroscopic parallax of a star associated with the globule. Bonnor-Ebert fits to the density profile, in conjunction with this distance, yield xi_max = 7.2, indicating that CB190 may be unstable. The high temperature (56 K) of the best fit Bonnor-Ebert model is in contradiction with the CO and thermal continuum data, leading to the conclusion that the thermal pressure is not enough to prevent free-fall collapse. We also find that the turbulence in the cloud is inadequate to support it. However, the cloud may be supported by the magnetic field, if this field is at the average level for dark globules. Since the magnetic field will eventually leak out through ambipolar diffusion, it is likely that CB190 is collapsing or in a late pre-collapse stage.Comment: 16 pages, 13 figures, accepted for publication in Ap
    corecore